Have a personal or library account? Click to login
Impact of four hydroponic nutrient solutions and regrowth on yield, safety and essential oil profile of basil (Ocimum basilicum L.) cultivated in soilless culture systems Cover

Impact of four hydroponic nutrient solutions and regrowth on yield, safety and essential oil profile of basil (Ocimum basilicum L.) cultivated in soilless culture systems

Open Access
|Apr 2025

References

  1. Abadias, M., Usall, J., Anguera, M., Solsona, C., And Viñas, I. (2008). Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. International Journal of Food Microbiology, 123, 121–129, https://doi.org/10.1016/j.ijfoodmicro.2007.12.013.
  2. Aboutalebi, A., Jahromi, M. G., and Farahi, M. H. (2013). Evaluation of growth and yield of organically-grown basil (Ocimum basilicum L.) in soilless culture. Journal of Food, Agriculture and Environment, 11(1), 299–301. https://www.researchgate.net/publication/269275953_Evaluation_of_growth_and_yield_of_originicaly-grown_basil_Ocimum_basilicum_L_in_soilless_culture
  3. Adel Mahmoodabad, H., Hokmalipoor, S., Shaban, M., and Ashrafi Parchin, R. (2014). Effect of foliar spray of urea and soil application of vermicompost on essential oil and chlorophyll content of green mint (Mentha spicata L.). International Journal of Advanced Biological and Biomedical Research, 2, 2104–2108, https://www.ijabbr.com/article_7408.html.
  4. Akoumianaki-Ioannidou, A., Rasouli, M., Podaropoulou, L., Karapanos, I., and Bilalis, D. (2015). Effects of cultivation system and fertilization on seedling production of Ocimum basilicum L. and Mentha spicata L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43, 131–137, https://doi.org/10.15835/nbha4319851.
  5. Arabaci, O., and Bayram, B. (2004). The effect of nitrogen fertilization and different plant densities on some agronomic and technologic characteristic of Ocimum basilicum L. (basil). Journal of Agronomy, 3, 255–262, https://doi.org/10.3923/ja.2004.255.262.
  6. Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113, https://doi.org/10.1146/annurev.arplant.59.032607.092759.
  7. Bi, Z., Ding, R., Huang, Y., and Pan, Y. (2024). Towards in-site carbon utilization and highly efficient nutrients removal: Effects of ammonium on the phosphorus recovery performance in a biofilm-based system. Journal of Water Process Engineering, 62, 105380, https://doi.org/10.1016/j.jwpe.2024.105380.
  8. Bian, Z., Wang, Y., Zhang, X., Li, T., Grundy, S., Yang, Q., and Cheng, R. (2020). A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments. Foods (Basel, Switzerland), 9, 732, https://doi.org/10.3390/foods9060732.
  9. Binello, A., Orio, L., Pignata, G., Nicola, S., Chemat, F., and Cravotto, G. (2014). Effect of microwaves on the in situ hydrodistillation of four different Lamiaceae. Comptes Rendus Chimie, 17, 181–186, https://doi.org/10.1016/j.crci.2013.11.007.
  10. Burducea, M., Zheljazkov, V. D., Dincheva, I., Lobiuc, A., Teliban, G. C., Stoleru, V., and Zamfirache, M. M. (2018). Fertilization modifies the essential oil and physiology of basil varieties. Industrial Crops and Products, 121, 282–293, https://doi.org/10.1016/j.indcrop.2018.05.021.
  11. Cao, X., Huang, D., Dong, Y., Zhao, H., and Ito, Y. (2007). Separation of aloins A and B from Aloe vera exudates by high speed countercurrent chromatography. Journal of Liquid Chromatography and Related Technologies, 30, 1657–1668, https://doi.org/10.1080/10826070701224887.
  12. Chiyaneh, S. F., Rezaei-Chiyaneh, E., Amirnia, R., Afshar, R. K., and Siddique, K. H. M. (2022). Changes in the essential oil, fixed oil constituents, and phenolic compounds of ajowan and fenugreek in intercropping with pea affected by fertilizer sources. Industrial Crops and Products, 178, 114587, https://doi.org/10.1016/j.indcrop.2022.114587.
  13. Consentino, B. B., Vultaggio, L., Sabatino, L., Ntatsi, G., Rouphael, Y., Bondì, C., De Pasquale, C., Guarino, V., Iacuzzi, N., Capodici, G., and Mauro, R. P. (2023). Combined effects of biostimulants, N level and drought stress on yield, quality and physiology of greenhouse-grown basil. Plant Stress, 10, 100268, https://doi.org/10.1016/j.stress.2023.100268.
  14. Cruz, L. R. O., Fernandes, Â, Di Gioia, F., Petropoulos, S. A., Polyzos, N., Dias, M. I, Pinela, J., Kostić, M., Soković, M. D., Ferreira, I. C. F. R., and Barros, L. (2020). The effect of nitrogen input on chemical profile and bioactive properties of green-and red-colored basil cultivars. Antioxidants (Basel, Switzerland), 9(11), 1036, https://doi.org/10.3390/antiox9111036.
  15. Daneshian, A., Gurbuz, B., Cosge, B., and Ipek, A. (2009). Chemical components of essential oils from basil (Ocimum basilicum L.) grown at different nitrogen levels. International Journal of Engineering Science, 3(3), 9–13, https://ijnes.org/index.php/ijnes/article/view/505.
  16. Dasgan, H. Y., Aldiyab, A., Elgudayem, F., Ikiz, B., and Gruda, N. S. (2022). Effect of biofertilizers on leaf yield, nitrate amount, mineral content and antioxidants of basil (Ocimum basilicum L.) in a floating culture. Scientific Reports, 12(1), 20917, https://doi.org/10.1038/s41598-022-24799-x.
  17. Deroles, S. (2008). Anthocyanin biosynthesis in plant cell cultures: A Potential source of natural colourants. In C. Winefield, K. Davies and K. Gould (Eds), Anthocyanins (pp. 108–167). New York, NY, USA: Springer, https://doi.org/10.1007/978-0-387-77335-3_5.
  18. El Gendy, A. G., El Gohary, A. E., Omer, E. A., Hendawy, S. F., Hussein, M. S., Petrova, V., and Stancheva, I. (2015). Effect of nitrogen and potassium fertilizer on herbage and oil yield of chervil plant (Anthriscus cerefolium L.). Industrial Crops and Products, 69, 167–174, https://doi.org/10.1016/j.indcrop.2015.02.023.
  19. Fallovo, C., Rouphael, Y., Rea, E., Battistelli, A., and Colla, G. (2009). Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. Journal of the Science of Food and Agriculture, 89, 1682–1689, https://doi.org/10.1002/jsfa.3641.
  20. Fang, X., Yang, Y., Zhao, Z., Zhou, Y., Liao, Y., Guan, Z., Chen, S., Fang, W., Chen, F., and Zhao, S. (2023). Optimum nitrogen, phosphorous, and potassium fertilizer application increased Chrysanthemum growth and quality by reinforcing the soil microbial community and nutrient cycling function. Plants (Basel, Switzerland), 12(23), 4062, https://doi.org/10.3390/plants12234062.
  21. Fernandes, P. C., Facanali, R., Teixeira, J. P. F., Furlani, P. R., and Marques, M. O. M. (2004). Cultivo de manjericão em hidroponia e em diferentes substratos sob ambiente protegido. Horticultura Brasileira, 22, 260–264, https://doi.org/10.1590/s0102-05362004000200019.
  22. Fontana, E., Hoeberechts, J., Nicola, S., Cros, V., Battista Palmegiano, G., and Giorgio Peiretti, P. (2006). Nitrogen concentration and nitrate/ammonium ratio affect yield and change the oxalic acid concentration and fatty acid profile of purslane (Portulaca oleracea L.) grown in a soilless culture system. Journal of the Science of Food and Agriculture, 86(14), 2417–2424, https://doi.org/10.1002/jsfa.2633.
  23. Fontana, E., and Nicola, S. (2009). Traditional and soilless culture systems to produce corn salad (Valerianella olitoria L.) and rocket (Eruca sativa Mill.) with low nitrate content. Journal of Food Agriculture and Environment, 7(2), 405–410, https://www.wflpublisher.com/Abstract/1671.
  24. Garlet, T. M. B., Paulus, D., and Flores, R. (2013). Production and chemical composition of Mentha × piperita var. citrate (Ehrh.) Briq. essential oil regarding to different potassium concentrations in the hydroponic solution. Journal of Biotechnology and Biodiversity, 4, 200–206, https://doi.org/10.20873/jbb.uft.cemaf.v4n3.garlet.
  25. Giurgiu, R. M., Morar, G. A., Duda, B. M., and Cluj-Napoca, V. M. (2014). Study regarding the suitability of cultivating medicinal plants in hydroponic systems in controlled environment. Journal of Biotechnology and Biodiversity, 4(3), 200–206, https://doi.org/10.20873/jbb.uft.cemaf.v4n3.garlet.
  26. Hazrati, S., Pignata, G., Casale, M., Hosseini, S. J., and Nicola, S. (2024a). Influence of nutrient solutions in an NGS® soilless system on the yield, quality and shelf life of fresh-cut commercial mint at different harvest times. Agronomy, 14(3), 610, https://doi.org/10.3390/agronomy14030610.
  27. Hazrati, S., Mousavi, Z., and Nicola, S. (2024b). Harvest time optimization for medicinal and aromatic plant secondary metabolites. Plant Physiology and Biochemistry, 2012, 108735, https://doi.org/10.1016/j.plaphy.2024.108735.
  28. Hussain, A. I., Anwar, F., Hussain Sherazi, S. T., and Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chemistry, 108, 986–995, https://doi.org/10.1016/j.foodchem.2007.12.010.
  29. Iglesias, M. J., López, J. G., Collados Luján, J. F., Ortiz, F. L., Pereznieto, H. B., Toresano, F., and Camacho, F. (2014). Effect of genetic and phenotypic factors on the composition of commercial marmande type tomatoes studied through HRMAS NMR spectroscopy. Food Chemistry, 142, 1–11, https://doi.org/10.1016/j.foodchem.2013.07.037.
  30. Jing, J., Rui, Y., Zhang, F., Rengel, Z., and Shen, J. (2010). Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crops Research, 119(2–3), 355–364, https://doi.org/10.1016/j.fcr.2010.08.005.
  31. Kiferle, C., Maggini, R., and Pardossi, A. (2013). Influence of nitrogen nutrition on growth and accumulation of rosmarinic acid in sweet basil (Ocimum basilicum L.) grown in hydroponic culture. Australian Journal of Crop Science, 7, 321–327, http://www.cropj.com/kiferle_7_3_2013_321_327.pdf.
  32. Kolega, S., Miras-Moreno, B., Buffagni, V., Lucini, L., Valentinuzzi, F., Maver, M., Mimmo, T., Trevisan, M., PII, Y., and Cesco, S. (2020). Nutraceutical profiles of two hydroponically grown sweet basil cultivars as affected by the composition of the nutrient solution and the inoculation with Azospirillum brasilense. Frontiers in Plant Science, 11, 596000, https://doi.org/10.3389/fpls.2020.596000.
  33. López-Arredondo, D. L., Leyva-González, M. A., González-Morales, S. I., López-Bucio, J., and Herrera-Estrella, L. (2014). Phosphate nutrition: Improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 65, 95–123, https://doi.org/10.1146/annurev-arplant-050213-035949.
  34. Luna, M. C., Martínez-Sánchez, A., Selma, M. V., Tudela, J. A., Baixauli, C., and Gil, M. I. (2013). Influence of nutrient solutions in an open-field soilless system on the quality characteristics and shelf life of fresh-cut red and green lettuces (Lactuca sativa L.) in different seasons. Journal of the Science of Food and Agriculture, 93, 415–421, https://doi.org/10.1002/jsfa.5777.
  35. Mandal, D., Sarkar, T., and Chakraborty, R. (2023). Critical review on nutritional, bioactive, and medicinal potential of spices and herbs and their application in food fortification and nanotechnology. Applied Biochemistry and Biotechnology, 195(2), 1319–1513, https://doi.org/10.1007/s12010-022-04132-y.
  36. Miceli, A., Moncada, A., Vetrano, F., and D’anna, F. (2003). First results on yield and quality response of basil (Ocimum basilicum L.) grown in a floating system. Acta Horticulturae, 609, 377–381, https://doi.org/10.17660/ActaHortic.2003.609.57.
  37. Milenković, L., Stanojević, J., Cvetković, D., Stanojević, L., Lalević, D., Šunić, L., Fallik, E., and Ilić, Z. S. (2019). New technology in basil production with high essential oil yield and quality. Industrial Crops and Products, 140, 111718, https://doi.org/10.1016/j.indcrop.2019.111718.
  38. Mohamed, A. A., and Alotaibi, B. M. (2023). Essential oils of some medicinal plants and their biological activities: A mini review. Journal of Umm Al-Qura University for Applied Sciences, 9, 40–49, https://doi.org/10.1007/s43994-022-00018-1.
  39. Nicola, S., Hoeberechts, J., and Fontana, E. (2005). Comparison between traditional and soilless culture systems to produce rocket (Eruca sativa) with low nitrate content. Acta Horticulturae, 697, 549–555, https://doi.org/10.17660/ActaHortic.2005.697.72.
  40. Nicola, S., Hoeberechts, J., and Fontana, E. (2007). Ebb-and-Flow and floating systems to grow leafy vegetables: A review for rocket, corn salad, garden cress and purslane. Acta Horticulturae, 747, 585–592, https://doi.org/10.17660/actahortic.2007.747.76.
  41. Nicola, S., Pignata, G., Casale, M., Hazrati, S., and Ertani, A. (2021). Setting up a Lab-Scale Pilot plant to study the New Growing System (NGS®) for leafy vegetable and culinary herb growth. Horticulturae, 7, 90, https://doi.org/10.3390/horticulturae7050090.
  42. Nicola, S., Pignata, G., Casale, M., Lo Turco, P. E., and Gaino, W. (2016). Overview of a lab-scale pilot plant for studying baby leaf vegetables grown in soilless culture. The Horticulture Journal, 85(2), 97–104, https://doi.org/10.2503/hortj.MI-R01.
  43. Nicola, S., Pignata, G., and Tibaldi, G. (2018). The floating growing system can assure a low microbial contamination of baby leaf vegetables at harvest. Acta Horticulturae, 1209, 57–63, https://doi.org/10.17660/ActaHortic.2018.1209.9.
  44. Nicola, S., Rubiolo, P., Sgorbini, B., Gaino, W., Orsini, F., Gianquinto, G., and Pennisi, G. (2023). Growing sweet basil in a floating growing system enhances yields, reduces nitrate content, and modulates the aromatic profile. Acta Hortic., 1377, 903–910, https://doi.org/10.17660/ActaHortic.2023.1377.113.
  45. Olfati, J. A., Khasmakhi-Sabet, S. A., and Shabani, H. (2012). Nutrient solutions on yield and quality of basil and cress. International Journal of Vegetable Science, 18, 298–304, https://doi.org/10.1080/19315260.2011.642475.
  46. Pasley, H. R., Cairns, J. E., Camberato, J. J., and Vyn, T. J. (2019). Nitrogen fertilizer rate increases plant uptake and soil availability of essential nutrients in continuous maize production in Kenya and Zimbabwe. Nutrient Cycling in Agroecosystems, 115, 373–389, https://doi.org/10.1007/s10705-019-10016-1.
  47. Pennisi, G., Blasioli, S., Cellini, A., Maia, L., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Fernandez, J. A., Stanghellini, C., Marcelis, L. F. M., Orsini, F., and Gianquinto, G. (2019). Unraveling the role of red:blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil. Frontiers in Plant Science, 10, 305, https://doi.org/10.3389/fpls.2019.00305.
  48. Perchlik, M., and Tegeder, M. (2018). Leaf amino acid supply affects photosynthetic and plant nitrogen use efficiency under nitrogen stress. Plant Physiology, 178(1), 174–188, https://doi.org/10.1104/pp.18.00597.
  49. Pignata, G., Casale, M., and Nicola, S. (2017). Water and nutrient supply in horticultural crops grown in soilless culture: Resource efficiency in dynamic and intensive systems. In F. Tei, S. Nicola and P. Benincasa (Eds.), Advances in research on fertilization management of vegetable Crops. Advances in olericulture (pp. 183–219). Cham: Springer, https://doi.org/10.1007/978-3-319-53626-2_7.
  50. Pignata, G., Niñirola, D., Casale, M., Lo Turco, P. E., Egea-Gilabert, C., Fernández, J. A., and Nicola, S. (2016). Inherent quality and safety of watercress grown in a floating system using Bacillus subtilis. The Horticulture Journal, 85, 148–153, https://doi.org/10.2503/hortj.MI-091.
  51. Rouphael, Y., Cardarelli, M., Lucini, L., Rea, E., and Colla, G. (2012). Nutrient solution concentration affects growth, mineral composition, phenolic acids, and flavonoids in leaves of artichoke and cardoon. Hortscience: A Publication of the American Society for Horticultural Science, 47, 1424–1429, https://doi.org/10.21273/hortsci.47.10.1424.
  52. Rouphael, Y., Giordano, M., Pannico, A., Di Stasio, E., Raimondi, G., El-Nakhel, C., Di Mola, I., Mori, M. and De Pascale, S. (2018). Nutritional quality of hydroponically grown basil in response to salinity and growing season. Acta Horticulturae, 1227, 693–698, https://doi.org/10.17660/ActaHortic.2018.1227.88.
  53. Ryu, D. H., Cho, J. Y., Yang, S. H., and Dkim, H. Y. (2023). Effects of harvest timing on phytochemical composition in Lamiaceae plants under an environment-controlled system. Antioxidants (Basel, Switzerland), 12, 1909, https://doi.org/10.3390/antiox12111909.
  54. Saha, S., Monroe, A., and Day, M. R. (2016). Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems. Annals of Agricultural Sciences, 61(2), 181–186, https://doi.org/10.1016/j.aoas.2016.10.001.
  55. Salehi, A., Fallah, S., Zitterl-Eglseer, K., Kaul, H. P., Surki, A. A., and Amehdi, B. (2019). Effect of organic fertilizers on antioxidant activity and bioactive compounds of fenugreek seeds in intercropped systems with buckwheat. Agronomy, 9(7), 367, https://doi.org/10.3390/agronomy9070367.
  56. Sambo, P., Nicoletto, C., Giro, A., Pii, Y., Valentinuzzi, F., Mimmo, T., Lugli, P., Orzes, G., Mazzetto, F., Astolfi, S., Terzano, R., and Cesco, S. (2019). Hydroponic solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Frontiers in Plant Science, 10, 923, https://doi.org/10.3389/fpls.2019.00923.
  57. Sangeetha, T., and Periyathambi, E. (2024). Automatic nutrient estimator: Distributing nutrient solution in hydroponic plants based on plant growth. PeerJ Computer Science, 10, e1871, https://doi.org/10.7717/peerj-cs.1871.
  58. Sardans, J., and Peñuelas, J. (2021). Potassium control of plant functions: Ecological and agricultural implications. Plants (Basel, Switzerland), 10, 419, https://doi.org/10.3390/plants10020419.
  59. Scagel, C. F., and Lee, J. (2012). Phenolic composition of basil plants is differentially altered by plant nutrient status and inoculation with mycorrhizal fungi. HortScience, 47, 660–671, https://doi.org/10.21273/hortsci.47.5.660.
  60. Scuderi, D., Restuccia, C., Chisari, M., Barbagallo, R. N., Caggia, C., and Giuffrida, F. (2011). Salinity of nutrient solution influences the shelf-life of fresh-cut lettuce grown in floating system. Postharvest Biology and Technology, 59, 132–137, https://doi.org/10.1016/j.postharvbio.2010.08.016.
  61. Selma, M. V., Luna, M. C., Martínez-Sánchez, A., Tudela, J. A., Beltrán, D., Baixauli, C., and Gil, M. I. (2012). Sensory quality, bioactive constituents and microbiological quality of green and red fresh-cut lettuces (Lactuca sativa L.) are influenced by soil and soilless agricultural production systems. Postharvest Biology and Technology, 63, 16–24, https://doi.org/10.1016/j.postharvbio.2011.08.002.
  62. Seo, M. W., Yang, D. S., Kays, S. J., Kim, J. H., Woo, J. H., and Park, K. W. (2009). Effects of nutrient solution electrical conductivity and sulfur, magnesium, and phosphorus concentration on sesquiterpene lactones in hydroponically grown lettuce (Lactuca sativa L.). Scientia Horticulturae, 122, 369–374, https://doi.org/10.1016/j.scienta.2009.06.013.
  63. Sifola, M. I., and Barbieri, G. (2006). Growth, yield and essential oil content of three cultivars of basil grown under different levels of nitrogen in the field. Scientia Horticulturae, 108, 408–413, https://doi.org/10.1016/j.scienta.2006.02.002.
  64. Silva, T. C., Bertolucci, S. K., Carvalho, A. A., Tostes, W. N., Alvarenga, I. C., Pacheco, F. V., De Assis, R. M. A., and Pinto, J. E. (2021). Macroelement omission in hydroponic systems changes plant growth and chemical composition of Melissa officinalis L. essential oil. Journal of Applied Research on Medicinal and Aromatic Plants, 24, 100297, https://doi.org/10.1016/j.jarmap.2021.100297.
  65. Skrypnik, L., Novikova, A., and Tokupova, E. (2019). Improvement of phenolic compounds, essential oil content and antioxidant properties of sweet basil (Ocimum basilicum L.) depending on type and concentration of selenium application. Plants, 8, 458, https://doi.org/10.3390/plants8110458.
  66. Solis-Toapanta, E., Fisher, P., and Gómez, C. (2020). Growth rate and nutrient uptake of basil in small-scale hydroponics. HortScience, 55(4), 507–514, https://doi.org/10.21273/HORTSCI14727-19.
  67. Song, J., Yang, J., and Jeong, B. R. (2024). Characterization of physiology, photosynthesis, and nutrition based on induced deficiencies of macro-and micronutrients in basil (Ocimum basilicum L.). Agronomy, 14, 208, https://doi.org/10.3390/agronomy14010208.
  68. Souza, M. A. A., Lemos, M. J., Brito, D. M. C., Fernandes, M. S., Castro, R. N., and Souza, S. R. (2014). Production and quality of menthol mint essential oil and antifungal and antigerminative activity. American Journal of Plant Sciences, 5, 3311–3318, https://doi.org/10.4236/ajps.2014.521346.
  69. Suh, E. J., Park, K. W., and Park, K. (1999). Effect of different concentrations of nutrient solutions on the growth, yield, and quality of basil. Acta Horticulturae, 483, 193–198, https://doi.org/10.17660/ActaHortic.1999.483.21.
  70. Vanegas, D. E., Contreras, A., Bustamante, A. I., Tapia, M. L., Lizana, L. A., and Escalona, V. H. (2016). Effect of nitrogen concentration in the nutritional solution and harvest time on nitrate content in baby leaf Swiss chard crop in a hydroponic system. Acta Horticulturae, 1141, 191–198, https://doi.org/10.17660/ActaHortic.2016.1141.22.
  71. Walters, K. J., and Currey, C. J. (2018). Effects of nutrient solution concentration and daily light integral on growth and nutrient concentration of several basil species in hydroponic production. HortScience, 53(9), 1319–1325, https://doi.org/10.21273/HORTSCI13126-18.
  72. Wang, M., Zheng, Q., Shen, Q., and Guo, S. (2013). The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 14(4), 7370–7390, https://doi.org/10.3390/ijms14047370.
  73. Wang, X., Hao, L., Zhu, B., and Jiang, Z. (2018). Plant calcium signaling in response to potassium deficiency. International Journal of Molecular Sciences, 19, 3456, https://doi.org/10.3390/ijms19113456.
  74. Xu, G., Fan, X., and Miller, A. J. (2012). Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 63, 153–182, https://doi.org/10.1146/annurev-arplant-042811-105532.
  75. Zahran, E. M., Abdelmohsen, U. R., Khalil, H. E., Desoukey, S. Y., Fouad, M. A., and Kamel, M. S. (2020). Diversity, phytochemical and medicinal potential of the genus Ocimum L. (Lamiaceae). Phytochemistry Reviews, 19, 907–953, https://doi.org/10.1007/s11101-020-09690-9.
  76. Zhan, L., Bulgari, R., Pignata, G., Casale, M., and Nicola, S. (2022). The mixing ratio and filling-amount affect the tissue browning and antioxidant properties of fresh-cut baby leaf lettuce (Lactuca sativa L.) and rocket (Eruca sativa Mill.) grown in floating growing systems. Foods, 11(21), 3515, https://doi.org/10.3390/foods11213515.
  77. Zheljazkov, V. D., Cantrell, C. L., Ebelhar, M. W., Rowe, D. E., and Coker, C. (2008). Productivity, oil content, and oil composition of sweet basil as a function of nitrogen and sulfur fertilization. HortScience, 43, 1415–1422, https://doi.org/10.21273/hortsci.43.5.1415.
DOI: https://doi.org/10.2478/fhort-2024-0034 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 517 - 531
Submitted on: Jul 22, 2024
Accepted on: Dec 6, 2024
Published on: Apr 8, 2025
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Saeid Hazrati, Giuseppe Pignata, Manuela Casale, Arianna Binello, Giancarlo Cravotto, Marco Devecchi, Silvana Nicola, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.