Have a personal or library account? Click to login
Differences in phenolic acids in soil substrates of forest deciduous tree species Cover

Differences in phenolic acids in soil substrates of forest deciduous tree species

Open Access
|Sep 2024

References

  1. Adeleke, R., Nwangburuka, C., Oboirien, B. 2017. Origins, roles and fate of organic acids in soils: A review. South African Journal of Botany, 108, 393–406. DOI: 10.1016/j.sajb.2016.09.002.
  2. Achary, V.M.M., Patnaik, A.R., Panda, B.B. 2012. Oxidative biomarkers in leaf tissue of barley seedlings in response to aluminum stress. Ecotoxicology and Environmental Safety, 75, 16–26. DOI: 10.1016/j.ecoenv.2011.08.015.
  3. Baetz, U., Martinoia, E. 2014. Root exudates: the hidden part of plant defense. Trends in Plant Science, 19 (2), 90–98. DOI: 10.1016/j.tplants.2013.11.006.
  4. Bartha, D., Csiszár, Á., Zsigmond, V. 2008. Black locust (Robinia pseudoacacia L.). In: The most important invasive plants in Hungary (eds. Z. Botta-Dukát, L. Balogh). Institute of Ecology and Botany – Hungarian Academy of Science, Vácrátrót, Hungary, 63–76. DOI: 10.13140/2.1.2088.6085.
  5. Bergmann, J. et al. 2020. The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 6 (27), eaba3756. DOI: 10.1126/sciadv.aba3756.
  6. Bi, B.Y., Tong, Q., Wan, C.Y., Wang, K., Han, F.P. 2022. Pinus sylvestris var. mongolica mediates interspecific belowground chemical interactions through root exudates. Forest Ecology and Management, 511, 120158. DOI: 10.1016/j.foreco.2022.120158.
  7. Blum, U. 1996. Allelopathic interactions involving phenolic acids. Journal of Nematology, 28 (3), 259–267.
  8. Canarini, A., Kaiser, C., Merchant, A., Richter, A., Wanek, W. 2019. Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science, 10, 157. DOI: 10.3389/fpls.2019.00157.
  9. de Vries, F.T. et al. 2019. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytologist, 224 (1), 132–145. DOI: 10.1111/nph.16001.
  10. Drzewiecka, K. et al. 2019. Differences of Acer platanoides L. and Tilia cordata Mill. Response patterns/survival strategies during cultivation in extremely polluted mining sludge – A pot trial. Chemosphere, 229, 589–601. DOI: 10.1016/j.chemosphere.2019.05.051.
  11. Han Kyaw, E., Iwasaki, A., Suenaga, K., Kato-Noguchi, H. 2022. Phytotoxic activity of Clerodendrum indicum (L.) Kuntze and its potential phytotoxic substance. Emirates Journal of Food and Agriculture, 33 (10), 884–892. DOI: 10.9755/ejfa.2021.v33.i10.2779.
  12. Herbert, B.E., Bertsch, P.M. 1995. Characterization of dissolved and colloidal organic matter in soil solution: a review. In: Carbon Forms and Functions in Forest Soils (eds. W.W. McFee, J.M. Kelly). Soil Science Society of America, Inc. Madison, Wisconsin USA, 63–88. DOI: 10.2136/1995.carbonforms.c5.
  13. Cheemanapalli, S., Mopuri, R., Golla, R., Anuradha, C.M., Chitta, S.K. 2018. Syringic acid (SA) – A review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomedicine and Pharmacotherapy, 108, 547–557. DOI: 10.1016/j.biopha.2018.09.069.
  14. Inderjit, Mallik, A.U. 1997. Effect of phenolic compounds on selected soil properties. Forest Ecology and Management, 92 (1/3), 11–18. DOI: 10.1016/s0378-1127(96)03957-6.
  15. Jakl, M., Ćavar Zeljković, S., Kovač, I., Bělonožníková, K., Jaklová Dytrtová, J. 2021. Side effects of triazoles on treated crops. Chemosphere, 277, 130242. DOI: 10.1016/j.chemosphere.2021.130242.
  16. Jaklová Dytrtová, J., Jakl, M., Schröder, D. 2012. Complexation of malic acid with cadmium(II) probed by electrospray ionization mass spectrometry. Talanta, 90C, 63–68. DOI: 10.1016/j.talanta.2011.12.076.
  17. Jaklová Dytrtová, J., Straka, M., Bělonožníková, K., Jakl, M., Ryšlavá, H. 2018. Does resveratrol retain its antioxidative properties in wine? Redox behaviour of resveratrol in the presence of Cu(II) and tebuconazole. Food Chemistry, 262, 221–225. DOI: 10.1016/j.foodchem.2018.04.096.
  18. Jones, D.L. 1998. Organic acids in the rhizosphere – a critical review. Plant and Soil, 205 (1), 25–44. DOI: 10.1023/a:1004356007312.
  19. Kaiser, K., Guggenberger, G., Haumaier, L., Zech, W. 2002. The composition of dissolved organic matter in forest soil solutions: changes induced by seasons and passage through the mineral soil. Organic Geochemistry, 33 (3), 307–318. DOI: 10.1016/s0146-6380(01)00162-0.
  20. Kannan, R.R.R., Arumugam, R., Thangaradjou, T., Anantharaman, P. 2013. Phytochemical constituents, antioxidant properties and p-coumaric acid analysis in some seagrasses. Food Research International, 54 (1), 1229–1236. DOI: 10.1016/j.foodres.2013.01.027.
  21. Kasai, D., Masai, E., Katayama, Y., Fukuda, M. 2007. Degradation of 3-O-methylgallate in Sphingomonas paucimobilis SYK-6 by pathways involving protocatechuate 4,5-dioxygenase. FEMS Microbiology Letters, 274 (2), 323–328. DOI: 10.1111/j.1574-6968.2007.00855.x.
  22. Keiluweit, M., Bougoure, J.J., Nico, P.S., Pett-Ridge, J., Weber, P.K., Kleber, M. 2015. Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change, 5 (6), 588–595. DOI: 10.1038/nclimate2580.
  23. Khan, M.I.R., Fatma, M., Per, T.S., Anjum, N.A., Khan, N.A. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6, 462. DOI: 10.3389/fpls.2015.00462.
  24. Kopinga, J., Van den Burg, J. 1995. Using soil and foliar analysis to diagnose the nutritional status of urban trees. Journal of Arboriculture, 21 (1), 17–24. DOI: 10.48044/jauf.1995.004.
  25. Kumar, G.A. et al. 2024. Recent advancements in multifaceted roles of flavonoids in plant-rhizomicrobiome interactions. Frontiers in Plant Science, 14, 1297706. DOI: 10.3389/fpls.2023.1297706.
  26. Kuzyakov, Y., Raskatov, A., Kaupenjohann, M. 2003. Turnover and distribution of root exudates of Zea mays. Plant and Soil, 254 (2), 317–327. DOI: 10.1023/a:1025515708093.
  27. Landis, T.D., Tinus, R.W., McDonald, S.E., Barnett, J.P. 1989. Seedling Nutrition and Irrigation, Vol. 4. The container tree nursery manual. Agriculture Hanbook 674. U.S. Department of Agriculture, Forest Service, Washington, DC.
  28. Liang, G.P., Stark, J., Waring, B.G. 2023. Mineral reactivity determines root effects on soil organic carbon. Nature Communications, 14 (1), 4962. DOI: 10.1038/s41467-023-40768-y.
  29. Lima, R.B. et al. 2013. Enhanced lignin monomer production caused by cinnamic acid and its hydroxylated derivatives inhibits soybean root growth. PLoS One, 8 (12), e80542. DOI: 10.1371/journal.pone.0080542.
  30. Luster, J., Göttlein, A., Nowack, B., Sarret, G. 2009. Sampling, defining, characterising and modeling the rhizosphere-the soil science tool box. Plant and Soil, 321 (1/2), 457–482. DOI: 10.1007/s11104-008-9781-3.
  31. Malý, S., Fiala, P., Reininger, D., Obdržálková, E. 2014. The relationships among microbial parameters and the rate of organic matter mineralization in forest soils, as influenced by forest type. Pedobiologia, 57 (4/6), 235–244. DOI: 10.1016/j.pedobi.2014.09.003.
  32. Medina-Villar, S., Rodriguez-Echeverria, S., Lorenzo, P., Alonso, A., Perez-Corona, E., Castro-Diez, P. 2016. Impacts of the alien trees Ailanthus altissima (Mill.) Swingle and Robinia pseudoacacia L. on soil nutrients and microbial communities. Soil Biology and Biochemistry, 96, 65–73. DOI: 10.1016/j.soilbio.2016.01.015.
  33. Nasir, H., Iqbal, Z., Hiradate, S., Fujii, Y. 2005. Allelopathic potential of Robinia pseudo-acacia L. Journal of Chemical Ecology, 31 (9), 2179–2192. DOI: 10.1007/s10886-005-6084-5.
  34. Oppenheimer-Shaanan, Y. et al. 2022. A dynamic rhizosphere interplay between tree roots and soil bacteria under drought stress. Elife, 11, e79679. DOI: 10.7554/eLife.79679.
  35. Pizzeghello, D., Zanella, A., Carletti, P., Nardi, S. 2006. Chemical and biological characterization of dissolved organic matter from silver fir and beech forest soils. Chemosphere, 65 (2), 190–200. DOI: 10.1016/j.chemosphere.2006.03.001.
  36. Rao, S.P., Du, C., Li, A.J., Xia, X.L., Yin, W.L., Chen, J.H. 2019. Salicylic acid alleviated salt damage of Populus euphratica: A physiological and transcriptomic analysis. Forests, 10 (5), 423. DOI: 10.3390/f10050423.
  37. Richardson, D.M., Rejmánek, M. 2011. Trees and shrubs as invasive alien species – a global review. Diversity and Distributions, 17 (5), 788–809. DOI: 10.1111/j.1472-4642.2011.00782.x.
  38. Sanon, A. et al. 2009. Rhizosphere microbiota interfers with plant-plant interactions. Plant and Soil, 321 (1/2), 259–278. DOI: 10.1007/s11104-009-0010-5.
  39. Sasse, J., Martinoia, E., Northen, T. 2018. Feed your friends: Do plant exudates shape the root microbiome? Trends in Plant Science, 23 (1), 25–41. DOI: 10.1016/j.tplants.2017.09.003.
  40. Sedlář, O., Balík, J., Černý, J., Kulhánek, M., Smatanová, M. 2023. Long-term application of organic fertilizers in relation to soil organic matter quality. Agronomy-Basel, 13 (1), 175. DOI: 10.3390/agronomy13010175.
  41. Sharma, D., Shree, B., Kumar, S., Kumar, V., Sharma, S., Sharma, S. 2022. Stress induced production of plant secondary metabolites in vegetables: Functional approach for designing next generation super foods. Plant Physiology and Biochemistry, 192, 252–272. DOI: 10.1016/j.plaphy.2022.09.034.
  42. Siqueira, J.O., Nair, M.G., Hammerschmidt, R., Safir, G.R. 1991. Significance of phenolic compounds in plant-soil-microbial systems. Critical Reviews in Plant Sciences, 10 (1), 63–121. DOI: 10.1080/07352689109382307.
  43. Somssich, M., Khan, G.A., Persson, S. 2016. Cell wall heterogeneity in root development of Arabidopsis. Frontiers in Plant Science, 7, 1242. DOI: 10.3389/fpls.2016.01242.
  44. Strobel, B.W. 2001. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution – a review. Geoderma, 99 (3/4), 169–198. DOI: 10.1016/S0016-7061(00)00102-6.
  45. Šrámek, V., Novotný, R., Lomský, B., Maxa, M., Neuman, L., Fadrhonsová, V. 2004. Změny obsahů prvků v porostech smrku, buku, jeřábu a břízy v průběhu roku [Report]. VÚLHM, Jíloviště – Strnady.
  46. Taofiq, O. et al. 2017. The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food and Chemical Toxicology, 108, 139–147. DOI: 10.1016/j.fct.2017.07.051.
  47. Tato, L. et al. 2021. Plasticity, exudation and microbiome-association of the root system of Pellitory-of-the-wall plants grown in environments impaired in iron availability. Plant Physiology and Biochemistry, 168, 27–42. DOI: 10.1016/j.plaphy.2021.09.040.
  48. Vega-Aguilar, C.A., Barreiro, M.F., Rodrigues, A.E. 2020. Catalytic wet peroxide oxidation of vanillic acid as a lignin model compound towards the renewable production of dicarboxylic acids. Chemical Engineering Research and Design, 159, 115–124. DOI: 10.1016/j.cherd.2070.04.021.
  49. Vítková, M., Müllerová, J., Sádlo, J., Pergl, J., Pyšek, P. 2017. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. Forest Ecology and Management, 384, 287–302. DOI: 10.1016/j.foreco.2016.10.057.
  50. Vives-Peris, V., de Ollas, C., Gomez-Cadenas, A., Perez-Clemente, R.M. 2020. Root exudates: from plant to rhizosphere and beyond. Plant Cell Reports, 39 (1), 3–17. DOI: 10.1007/s00299-019-02447-5.
  51. Vlot, A.C., Dempsey, D.A., Klessig, D.F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177–206. DOI: 10.1146/annurev.phyto.050908.135202.
  52. Wen, F., Curlango-Rivera, G., Hawes, M.C. 2007a. Proteins among the polysaccharides. A new perspective on root cap slime. Plant Signaling and Behavior, 2 (5), 410–412. DOI: 10.4161/psb.2.5.4344.
  53. Wen, F.S., VanEtten, H.D., Tsaprailis, G., Hawes, M.C. 2007b. Extracellular proteins in pea root tip and border cell exudates. Plant Physiology, 143 (2), 773–783. DOI: 10.1104/pp.106.091637.
  54. Wen, F.S., White, G.J., VanEtten, H.D., Xiong, Z.G., Hawes, M.C. 2009. Extracellular DNA is required for root tip resistance to fungal infection. Plant Physiology, 151 (2), 820–829. DOI: 10.1104/pp.109.142067.
  55. Were, E., Schone, J., Viljoen, A., Rasche, F. 2022. Phenolics mediate suppression of Fusarium oxysporum f. sp. cubense TR4 by legume root exudates. Rhizosphere, 21, 100459. DOI: 10.1016/j.rhisph.2021.100459.
  56. Zhao, L. et al. 2022. Biological degradation of lignin: A critical review on progress and perspectives. Industrial Crops and Products, 188, 115715. DOI: 10.1016/j.indcrop.2022.115715.
  57. Zwetsloot, M.J., Kessler, A., Bauerle, T.L. 2018. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytologist, 218 (2), 530–541. DOI: 10.1111/nph.15041.
DOI: https://doi.org/10.2478/ffp-2024-0020 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 270 - 284
Submitted on: Dec 28, 2023
Accepted on: May 6, 2024
Published on: Sep 12, 2024
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Michal Jakl, Ivan Kuneš, Sanja Ćavar Zeljković, Petr Tarkowski, Jana Jaklová Dytrtová, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.