References
- Ahmad, I., & Khan, F. U. (2018). Multi-mode vibration based electromagnetic type micro power generator for structural health monitoring of bridges. Sensors and Actuators A: Physical, 275, 154–161. https://doi.org/10.1016/j.sna.2018.04.005
- Chillara, V. K., Cho, H., Hasanian, M., & Lissenden, C. J. (2015). Effect of load and temperature changes on nonlinear ultrasonic Measurements: Implications for SHM. In F.-K. Chang & F. Kopsaftopoulos (Eds.), Structural Health Monitoring 2015: System Reliability for Verification and Implementation - Proceedings of the 10th International Workshop on Structural Health Monitoring, IWSHM 2015 (pp. 783–790).
- de Sá Rodrigues, F. (2023). Structural health monitoring of complex composite structures under environmental and operational conditions [Doctoral dissertation]. Imperial College London.
- Espinoza, C., Feliú, D., Aguilar, C., Espinoza-González, R., Lund, F., Salinas, V., & Mujica, N. (2018). Linear versus nonlinear acoustic probing of plasticity in metals: A quantitative assessment. Materials, 11(11), 2217. https://doi.org/10.3390/ma11112217
- García-Macías, E., & Ubertini, F. (2022). Real-time Bayesian damage identification enabled by sparse PCE-Kriging meta-modelling for continuous SHM of large-scale civil engineering structures. Journal of Building Engineering, 59, 105004. https://doi.org/10.1016/j.jobe.2022.105004
- Giannakeas, I. N., Mazaheri, F., Bacarreza, O., Khodaei, Z. S., & Aliabadi, F. M. H. (2023). Probabilistic residual strength assessment of smart composite aircraft panels using guided waves. Reliability Engineering & System Safety, 237, 109338. https://doi.org/10.1016/j.ress.2023.109338
- He, J., Guan, X., Peng, T., Liu, Y., Saxena, A., Celaya, J., & Goebel, K. (2013). A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves. Smart Materials and Structures, 22(10), 105007. https://doi.org/10.1088/0964-1726/22/10/105007
- Khazaee, M., Derian, P., & Mouraud, A. (2022). A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods. Renewable Energy, 199, 1568–1579. https://doi.org/10.1016/j.renene.2022.09.032
- Kudela, P., Ostachowicz, W., & Żak, A. (2008). Damage detection in composite plates with embedded PZT transducers. Mechanical Systems and Signal Processing, 22(6), 1327–1335. https://doi.org/10.1016/j.ymssp.2007.07.008
- Kudela, P., Radzieński, M., & Ostachowicz, W. (2015). Identification of cracks in thin-walled structures by means of wavenumber filtering. Mechanical Systems and Signal Processing, 50-51, 456–466. https://doi.org/10.1016/j.ymssp.2014.05.041
- Li, M., & He, J. (2021). Effect of high temperature on ultrasonic velocity in graphite. Diamond and Related Materials, 116, 108368. https://doi.org/10.1016/j.diamond.2021.108368
- Liu, H., & Zhang, Y. (2019). Deep learning based crack damage detection technique for thin plate structures using guided lamb wave signals. Smart Materials and Structures, 29(1), 015032. https://doi.org/10.1088/1361-665x/ab58d6
- Mardanshahi, A., Nasir, V., Kazemirad, S., & Shokrieh, M. M. (2020). Detection and classification of matrix cracking in laminated composites using guided wave propagation and artificial neural networks. Composite Structures, 246, 112403. https://doi.org/10.1016/j.compstruct.2020.112403
- Martinez-Luengo, M., Kolios, A., & Wang, L. (2016). Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm. Renewable and Sustainable Energy Reviews, 64, 91–105. https://doi.org/10.1016/j.rser.2016.05.085
- Maruyama, T., Saitoh, T., & Hirose, S. (2017). Numerical study on sub-harmonic generation due to interior and surface breaking cracks with contact boundary conditions using time-domain boundary element method. International Journal of Solids and Structures, 126-127, 74–89. https://doi.org/10.1016/j.ijsolstr.2017.07.029
- Mishra, M., Lourenço, P. B., & Ramana, G. V. (2022). Structural health monitoring of civil engineering structures by using the internet of things: A review. Journal of Building Engineering, 48, 103954. https://doi.org/10.1016/j.jobe.2021.103954
- Pan, Y., Khodaei, Z. S., & Aliabadi, M. H. F. (2025). Online fatigue crack detection and growth modelling through higher harmonic analysis: A baseline-free approach. Mechanical Systems and Signal Processing, 224, 112167. https://doi.org/10.1016/j.ymssp.2024.112167
- Pan, Y., Khodaei, Z. S., & Aliabadi, F. M. H. (2025b). In-service fatigue crack monitoring through baseline-free automated detection and physics-informed neural network quantification. NDT & E International, 153, 103360. https://doi.org/10.1016/j.ndteint.2024.103360
- Ramadas, C., Balasubramaniam, K., Joshi, M., & Krishnamurthy, C. V. (2010). Interaction of guided Lamb waves with an asymmetrically located delamination in a laminated composite plate. Smart Materials and Structures, 19(6), 065009. https://doi.org/10.1088/0964-1726/19/6/065009
- Rauter, N., Lammering, R., & Kühnrich, T. (2016). On the detection of fatigue damage in composites by use of second harmonic guided waves. Composite Structures, 152, 247–258. https://doi.org/10.1016/j.compstruct.2016.05.049
- Ren, F., Giannakeas, I. N., Khodaei, Z. S., & Aliabadi, M. H. F. (2023a). The temperature effects on embedded PZT signals in structural health monitoring for composite structures with different thicknesses. NDT & E International, 141, 102988. https://doi.org/10.1016/j.ndteint.2023.102988
- Ren, F., Giannakeas, I. N., Sharif Khodaei, Z., & Aliabadi, M. H. F. (2023b). Theoretical and experimental investigation of guided wave temperature compensation for composite structures with different thicknesses. Mechanical Systems and Signal Processing, 200, 110594. https://doi.org/10.1016/j.ymssp.2023.110594
- Sampath, S., Jang, J., & Sohn, H. (2022). Ultrasonic Lamb wave mixing based fatigue crack detection using a deep learning model and higher-order spectral analysis. International Journal of Fatigue, 163, 107028. https://doi.org/10.1016/j.ijfatigue.2022.107028
- Steczek, M., Chudzik, P., & Szeląg, A. (2017). Combination of SHE- and SHM-PWM Techniques for VSI DC-Link Current Harmonics Control in Railway Applications. IEEE Transactions on Industrial Electronics, 64(10), 7666–7678. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7900369
- Su, Z., Zhou, C., Hong, M., Cheng, L., Wang, Q., & Qing, X. (2014a). Acousto-ultrasonics-based fatigue damage characterization: Linear versus nonlinear signal features. Mechanical Systems and Signal Processing, 45(1), 225–239. https://doi.org/10.1016/j.ymssp.2013.10.017
- Su, Z., Zhou, C., Hong, M., Cheng, L., Wang, Q., & Qing, X. (2014b). Acousto-ultrasonics-based fatigue damage characterization: Linear versus nonlinear signal features. Mechanical Systems and Signal Processing, 45(1), 225–239. https://doi.org/10.1016/j.ymssp.2013.10.017
- Tua, P. S., Quek, S. T., & Wang, Q. (2004). Detection of cracks in plates using piezo-actuated Lamb waves. Smart Materials and Structures, 13(4), 643–660. https://doi.org/10.1088/0964-1726/13/4/002
- Yang, Y., Ng, C.-T., Kotousov, A., Sohn, H., & Lim, H. J. (2018). Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies. Mechanical Systems and Signal Processing, 99, 760–773. https://doi.org/10.1016/j.ymssp.2017.07.011
- Yeung, C., & Ng, C. T. (2020). Nonlinear guided wave mixing in pipes for detection of material nonlinearity. Journal of Sound and Vibration, 485, 115541. https://doi.org/10.1016/j.jsv.2020.115541
- Yue, N., & Aliabadi, M. H. (2020). Hierarchical approach for uncertainty quantification and reliability assessment of guided wave-based structural health monitoring. Structural Health Monitoring, 20(5), 2274–2299. https://doi.org/10.1177/1475921720940642
- Yun, H., Rayhana, R., Pant, S., Genest, M., & Liu, Z. (2021). Nonlinear ultrasonic testing and data analytics for damage characterization: A review. Measurement, 186, 110155. https://doi.org/10.1016/j.measurement.2021.110155
- Zhang, M., Xiao, L., Qu, W., & Lu, Y. (2017). Damage detection of fatigue cracks under nonlinear boundary condition using subharmonic resonance. Ultrasonics, 77, 152–159. https://doi.org/10.1016/j.ultras.2017.02.001
- Zhao, G., Jiang, M., Li, W., Luo, Y., Sui, Q., & Jia, L. (2022a). Early fatigue damage evaluation based on nonlinear Lamb wave third-harmonic phase velocity matching. International Journal of Fatigue, 167, 107288. https://doi.org/10.1016/j.ijfatigue.2022.107288
- Zhao, G., Jiang, M., Luo, Y., & Sui, Q. (2022b). Third harmonic approximate phase velocity matching nonlinear early fatigue damage detection. Measurement, 189, 110518. https://doi.org/10.1016/j.measurement.2021.110518
- Zhao, J., Wu, J., Chen, X., & Zeng, R. (2022c). Effect of temperature on ultrasonic nonlinear parameters of carbonated concrete. Materials, 15(24), 8797. https://doi.org/10.3390/ma15248797