Have a personal or library account? Click to login
Baseline-Free Detection of Progressive Fatigue Damage Using Nonlinear Ultrasonic Guided Waves Cover

Baseline-Free Detection of Progressive Fatigue Damage Using Nonlinear Ultrasonic Guided Waves

Open Access
|Oct 2025

References

  1. Ahmad, I., & Khan, F. U. (2018). Multi-mode vibration based electromagnetic type micro power generator for structural health monitoring of bridges. Sensors and Actuators A: Physical, 275, 154–161. https://doi.org/10.1016/j.sna.2018.04.005
  2. Chillara, V. K., Cho, H., Hasanian, M., & Lissenden, C. J. (2015). Effect of load and temperature changes on nonlinear ultrasonic Measurements: Implications for SHM. In F.-K. Chang & F. Kopsaftopoulos (Eds.), Structural Health Monitoring 2015: System Reliability for Verification and Implementation - Proceedings of the 10th International Workshop on Structural Health Monitoring, IWSHM 2015 (pp. 783–790).
  3. de Sá Rodrigues, F. (2023). Structural health monitoring of complex composite structures under environmental and operational conditions [Doctoral dissertation]. Imperial College London.
  4. Espinoza, C., Feliú, D., Aguilar, C., Espinoza-González, R., Lund, F., Salinas, V., & Mujica, N. (2018). Linear versus nonlinear acoustic probing of plasticity in metals: A quantitative assessment. Materials, 11(11), 2217. https://doi.org/10.3390/ma11112217
  5. García-Macías, E., & Ubertini, F. (2022). Real-time Bayesian damage identification enabled by sparse PCE-Kriging meta-modelling for continuous SHM of large-scale civil engineering structures. Journal of Building Engineering, 59, 105004. https://doi.org/10.1016/j.jobe.2022.105004
  6. Giannakeas, I. N., Mazaheri, F., Bacarreza, O., Khodaei, Z. S., & Aliabadi, F. M. H. (2023). Probabilistic residual strength assessment of smart composite aircraft panels using guided waves. Reliability Engineering & System Safety, 237, 109338. https://doi.org/10.1016/j.ress.2023.109338
  7. He, J., Guan, X., Peng, T., Liu, Y., Saxena, A., Celaya, J., & Goebel, K. (2013). A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves. Smart Materials and Structures, 22(10), 105007. https://doi.org/10.1088/0964-1726/22/10/105007
  8. Khazaee, M., Derian, P., & Mouraud, A. (2022). A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods. Renewable Energy, 199, 1568–1579. https://doi.org/10.1016/j.renene.2022.09.032
  9. Kudela, P., Ostachowicz, W., & Żak, A. (2008). Damage detection in composite plates with embedded PZT transducers. Mechanical Systems and Signal Processing, 22(6), 1327–1335. https://doi.org/10.1016/j.ymssp.2007.07.008
  10. Kudela, P., Radzieński, M., & Ostachowicz, W. (2015). Identification of cracks in thin-walled structures by means of wavenumber filtering. Mechanical Systems and Signal Processing, 50-51, 456–466. https://doi.org/10.1016/j.ymssp.2014.05.041
  11. Li, M., & He, J. (2021). Effect of high temperature on ultrasonic velocity in graphite. Diamond and Related Materials, 116, 108368. https://doi.org/10.1016/j.diamond.2021.108368
  12. Liu, H., & Zhang, Y. (2019). Deep learning based crack damage detection technique for thin plate structures using guided lamb wave signals. Smart Materials and Structures, 29(1), 015032. https://doi.org/10.1088/1361-665x/ab58d6
  13. Mardanshahi, A., Nasir, V., Kazemirad, S., & Shokrieh, M. M. (2020). Detection and classification of matrix cracking in laminated composites using guided wave propagation and artificial neural networks. Composite Structures, 246, 112403. https://doi.org/10.1016/j.compstruct.2020.112403
  14. Martinez-Luengo, M., Kolios, A., & Wang, L. (2016). Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm. Renewable and Sustainable Energy Reviews, 64, 91–105. https://doi.org/10.1016/j.rser.2016.05.085
  15. Maruyama, T., Saitoh, T., & Hirose, S. (2017). Numerical study on sub-harmonic generation due to interior and surface breaking cracks with contact boundary conditions using time-domain boundary element method. International Journal of Solids and Structures, 126-127, 74–89. https://doi.org/10.1016/j.ijsolstr.2017.07.029
  16. Mishra, M., Lourenço, P. B., & Ramana, G. V. (2022). Structural health monitoring of civil engineering structures by using the internet of things: A review. Journal of Building Engineering, 48, 103954. https://doi.org/10.1016/j.jobe.2021.103954
  17. Pan, Y., Khodaei, Z. S., & Aliabadi, M. H. F. (2025). Online fatigue crack detection and growth modelling through higher harmonic analysis: A baseline-free approach. Mechanical Systems and Signal Processing, 224, 112167. https://doi.org/10.1016/j.ymssp.2024.112167
  18. Pan, Y., Khodaei, Z. S., & Aliabadi, F. M. H. (2025b). In-service fatigue crack monitoring through baseline-free automated detection and physics-informed neural network quantification. NDT & E International, 153, 103360. https://doi.org/10.1016/j.ndteint.2024.103360
  19. Ramadas, C., Balasubramaniam, K., Joshi, M., & Krishnamurthy, C. V. (2010). Interaction of guided Lamb waves with an asymmetrically located delamination in a laminated composite plate. Smart Materials and Structures, 19(6), 065009. https://doi.org/10.1088/0964-1726/19/6/065009
  20. Rauter, N., Lammering, R., & Kühnrich, T. (2016). On the detection of fatigue damage in composites by use of second harmonic guided waves. Composite Structures, 152, 247–258. https://doi.org/10.1016/j.compstruct.2016.05.049
  21. Ren, F., Giannakeas, I. N., Khodaei, Z. S., & Aliabadi, M. H. F. (2023a). The temperature effects on embedded PZT signals in structural health monitoring for composite structures with different thicknesses. NDT & E International, 141, 102988. https://doi.org/10.1016/j.ndteint.2023.102988
  22. Ren, F., Giannakeas, I. N., Sharif Khodaei, Z., & Aliabadi, M. H. F. (2023b). Theoretical and experimental investigation of guided wave temperature compensation for composite structures with different thicknesses. Mechanical Systems and Signal Processing, 200, 110594. https://doi.org/10.1016/j.ymssp.2023.110594
  23. Sampath, S., Jang, J., & Sohn, H. (2022). Ultrasonic Lamb wave mixing based fatigue crack detection using a deep learning model and higher-order spectral analysis. International Journal of Fatigue, 163, 107028. https://doi.org/10.1016/j.ijfatigue.2022.107028
  24. Steczek, M., Chudzik, P., & Szeląg, A. (2017). Combination of SHE- and SHM-PWM Techniques for VSI DC-Link Current Harmonics Control in Railway Applications. IEEE Transactions on Industrial Electronics, 64(10), 7666–7678. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7900369
  25. Su, Z., Zhou, C., Hong, M., Cheng, L., Wang, Q., & Qing, X. (2014a). Acousto-ultrasonics-based fatigue damage characterization: Linear versus nonlinear signal features. Mechanical Systems and Signal Processing, 45(1), 225–239. https://doi.org/10.1016/j.ymssp.2013.10.017
  26. Su, Z., Zhou, C., Hong, M., Cheng, L., Wang, Q., & Qing, X. (2014b). Acousto-ultrasonics-based fatigue damage characterization: Linear versus nonlinear signal features. Mechanical Systems and Signal Processing, 45(1), 225–239. https://doi.org/10.1016/j.ymssp.2013.10.017
  27. Tua, P. S., Quek, S. T., & Wang, Q. (2004). Detection of cracks in plates using piezo-actuated Lamb waves. Smart Materials and Structures, 13(4), 643–660. https://doi.org/10.1088/0964-1726/13/4/002
  28. Yang, Y., Ng, C.-T., Kotousov, A., Sohn, H., & Lim, H. J. (2018). Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies. Mechanical Systems and Signal Processing, 99, 760–773. https://doi.org/10.1016/j.ymssp.2017.07.011
  29. Yeung, C., & Ng, C. T. (2020). Nonlinear guided wave mixing in pipes for detection of material nonlinearity. Journal of Sound and Vibration, 485, 115541. https://doi.org/10.1016/j.jsv.2020.115541
  30. Yue, N., & Aliabadi, M. H. (2020). Hierarchical approach for uncertainty quantification and reliability assessment of guided wave-based structural health monitoring. Structural Health Monitoring, 20(5), 2274–2299. https://doi.org/10.1177/1475921720940642
  31. Yun, H., Rayhana, R., Pant, S., Genest, M., & Liu, Z. (2021). Nonlinear ultrasonic testing and data analytics for damage characterization: A review. Measurement, 186, 110155. https://doi.org/10.1016/j.measurement.2021.110155
  32. Zhang, M., Xiao, L., Qu, W., & Lu, Y. (2017). Damage detection of fatigue cracks under nonlinear boundary condition using subharmonic resonance. Ultrasonics, 77, 152–159. https://doi.org/10.1016/j.ultras.2017.02.001
  33. Zhao, G., Jiang, M., Li, W., Luo, Y., Sui, Q., & Jia, L. (2022a). Early fatigue damage evaluation based on nonlinear Lamb wave third-harmonic phase velocity matching. International Journal of Fatigue, 167, 107288. https://doi.org/10.1016/j.ijfatigue.2022.107288
  34. Zhao, G., Jiang, M., Luo, Y., & Sui, Q. (2022b). Third harmonic approximate phase velocity matching nonlinear early fatigue damage detection. Measurement, 189, 110518. https://doi.org/10.1016/j.measurement.2021.110518
  35. Zhao, J., Wu, J., Chen, X., & Zeng, R. (2022c). Effect of temperature on ultrasonic nonlinear parameters of carbonated concrete. Materials, 15(24), 8797. https://doi.org/10.3390/ma15248797
DOI: https://doi.org/10.2478/fas-2024-0009 | Journal eISSN: 2300-7591 | Journal ISSN: 2081-7738
Language: English
Page range: 119 - 130
Published on: Oct 14, 2025
Published by: ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Yuhang Pan, Zahra Sharif Khodaei, M.H. Aliabadi, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.