Have a personal or library account? Click to login
Effect of Thermal and External Load on Mechanical Behaviour on CFRP/Aluminium Hybrid Joints Cover

Effect of Thermal and External Load on Mechanical Behaviour on CFRP/Aluminium Hybrid Joints

Open Access
|Jul 2025

References

  1. Bakuckas, J. J. (2002). Full-Scale testing and analysis of fuselage structure containing multiple cracks, final report (DOT/FAA/AR-01/46). Federal Aviation Administration.
  2. Battelle Memorial Institute (Red.). (2015). Metallic materials properties development and standardization MMPDS-10. Federal Aviation Administration.
  3. Boller, C., & Seeger, T. (2013). Materials data for cyclic loading, part D: Aluminium and titanium alloys (C. Laird, Red.). Elsevier.
  4. Eastin, R. (2009). ‘WFD’ – What is it and what’s ‘LOV’ got to do with it? International Journal of Fatigue, 31(6), 1012–1016. https://doi.org/10.1016/j.ijfatigue.2008.04.003
  5. Federal Aviation Administration. (2010). Aging Airplane Program: Widespread Fatigue Damage. Federal Register, 75(219). https://www.govinfo.gov/content/pkg/FR-2010-11-15/pdf/2010-28363.pdf
  6. Federal Aviation Administration. (2011). Establishing and implementing limit of validity to prevent widespread fatigue damage (AC 120-104).
  7. Li, G., Renaud, G., Liao, M., Okada, T., & Machida, S. (2017). A methodology for assessing fatigue life of a countersunk riveted lap joint. Advances in Aircraft and Spacecraft Science, 4(1), 1–19.
  8. Morimoto, T., Sugimoto, S., Kato, H., Hara, E., Yasuoka, T., Iwahori, Y., Ogasawara, T., & Ito, S. (2018). JAXA advanced composites database (in Japanese). JAXA Research and Development Memorandum, JAXA-RM-17-004, 1–230.
  9. Muller, R. P. G. (1995). An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints. Delft University of Technology.
  10. Okada, T., Kumazawa, H., Toyosawa, T., Takeda, T., Kasahara, T., Yamada, Y., Nagao, K., Aoki, Y., & Shoji, H. (2023). Research for thermal load and procedure to predict fatigue life up to form a fatigue crack on CFRP/Aluminum hybrid joints. Proceedings of the 31st ICAF Symposium. https://www.icaf.aero/icaf2023/proceedings/documents/118.pdf
  11. Seki, S., Arai, T., Fukushima, S., & Hosoi, A. (2017). Evaluation of fatigue life of thick CFRP laminates with toughened interlaminar layers in out-of-plane and in-plane transverse directions (in Japanese). Transaction of the JSME, 83(851), 16–00571. https://doi.org/10.1299/transjsme.16-00571
  12. Terada, H., Okada, T., & Dybskiy, P. (2001). Effect of load components on fatigue like of fuselage model structure. Proceedings of the International Committee on Aeronautical Fatigue 2001, 1, 263–272.
  13. Transport Airplane Metallic and Composite Structures Working Group. (2018). Transport Airplane Metallic and Composite Structures Working Group Recommendation Report. https://www.faa.gov/regulations_policies/rulemaking/committees/documents/media/TAMCSW G%20Recommendation%20Report.pdf
DOI: https://doi.org/10.2478/fas-2024-0002 | Journal eISSN: 2300-7591 | Journal ISSN: 2081-7738
Language: English
Page range: 16 - 28
Published on: Jul 7, 2025
Published by: ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Takao Okada, Tomo Takeda, Hisashi Kumazawa, Toshiyuki Kasahara, Sho Miyashita, Koichi Yamada, Kasumi Nagao, Yuichiro Aoki, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.