Have a personal or library account? Click to login
Assessment of Biological Degradability of the Waste Produced by Food Industry Cover

Assessment of Biological Degradability of the Waste Produced by Food Industry

Open Access
|Oct 2021

References

  1. [1] Directive EU 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L2001.
  2. [2] Van D, Fujuwara T, Leu Tho B, Toan P, Minh G. A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. Environ Eng Res. 2020;25(1):1-17. DOI: 10.4491/eer.2018.334.10.4491/eer.2018.334
  3. [3] Appels L, Lauwers J, Degréve J, Helsen L, Lievens B, Willems K. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew Sust Energy Rev. 2011;15(9):4295-301. DOI: 10.1016/j.rser.2011.07.121.10.1016/j.rser.2011.07.121
  4. [4] Shahbaz M, Ammar M, Zou D, Korai RM, Li X. An insight into the anaerobic co-digestion of municipal solid waste and food waste: influence of co-substrate mixture ratio and substrate to inoculum ratio on biogas production. Appl Biochem Biotechnol. 2019;187(4):1356-70. DOI: 10.1007/s12010-018-2891-3.10.1007/s12010-018-2891-3
  5. [5] Geršl M, Kanduč T, Matýsek D, Šotnar M, Mareček J. The role of mineral phases in the biogas production technology. Ecol Chem Eng S. 2018;25(1):51-9. DOI: 10.1515/eces-2018-0003.10.1515/eces-2018-0003
  6. [6] Komilis D, Barrena R, Grando RL, Vogiatzi V, Sánchez A, Font X. A state of the art literature review on anaerobic digestion of food waste: influential operating parameters on methane yield. Rev Environ Sci Biotechnol. 2017;16(2):347-60. DOI: 10.1007/s11157-017-9428-z.10.1007/s11157-017-9428-z
  7. [7] Braber K. Anaerobic digestion of municipal solid waste: A modern waste disposal option on the verge of breakthrough. Biomass Bioenergy. 1995; 9(1-5):365-76. DOI: 10.1016/0961-9534(95)00103-4.10.1016/0961-9534(95)00103-4
  8. [8] Wrońska I, Cybulska K. Quantity and quality of biogas produced from the poultry sludge optimized by filamentous fungi. Ecol Chem Eng. S. 2018;25(3):395-404. DOI: 10.1515/eces-2018-0027.10.1515/eces-2018-0027
  9. [9] Gruber-Brunhumer MR, Montgomery M, Nussbaumer M, Schoeppa T, Zohard E, Mucciod M, et al. Effects of partial maize silage substitution with microalgae on viscosity and biogas yields in continuous AD trials. J Biotechnol. 2019;295:80-9. DOI: 10.1016/j.jbiotec.2019.02.004.10.1016/j.jbiotec.2019.02.00430853635
  10. [10] Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L. The anaerobic digestion of solid organic waste. Waste Manage. 2011;31(8):1737-44. DOI: 10.1016/j.wasman.2011.03.021.10.1016/j.wasman.2011.03.02121530224
  11. [11] Panigrahi S, Dubey B. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew Energy. 2019;143:779-97. DOI: 10.1016/j.renene.2019.05.040.10.1016/j.renene.2019.05.040
  12. [12] Andersen L, Lamp A, Dieckmann C, Baetge S, Schmidt L, Kaltschmitt M. Biogas plants as key units of biorefinery concepts: Options and their assessment. J Biotechnol. 2018; 283:130-9. DOI: 10.1016/j.jbiotec.2018.07.041.10.1016/j.jbiotec.2018.07.041
  13. [13] Angelidaki I, Ellegaard L. Codigestion of manure and organic wastes in centralized biogas plants: Status and future trends. Appl Biochem Biotechnol. 2003;109(1-3):95-106. DOI: 10.1385/ABAB:109:1-3:95.10.1385/ABAB:109:1-3:95
  14. [14] Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renew Sust Energy Rev. 2011;15(1):821-6. DOI: 10.1016/j.rser.2010.07.042.10.1016/j.rser.2010.07.042
  15. [15] Wilkie CA, Riedesel KJ, Owens MJ. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenergy. 2000;19(2):63-102. DOI: 10.1016/S0961-9534(00)00017-910.1016/S0961-9534(00)00017-9
  16. [16] Moestedt J, Påledal S, Schnürer A, Nordell E. Biogas production from thin stillage on an industrial scale -Experience and optimisation. Energies. 2013;6(11):5642-55. DOI: 10.3390/en6115642.10.3390/en6115642
  17. [17] Drosg B, Fuchs W, Meixner K, Waltenberger R, Kirchmayr R, Braun R et al. Anaerobic digestion of stillage fractions - estimation of the potential for energy recovery in bioethanol plants. Water Sci Technol. 2013;67(3):494-505. DOI: 10.2166/wst.2012.574.10.2166/wst.2012.574
  18. [18] Oh ST, Martin AD. Glucose contents in anaerobic ethanol stillage digestion manipulate thermodynamic driving force in between hydrogenophilic and acetoclastic methanogens. Chem Eng J. 2014;243:526-36. DOI: 10.1016/j.cej.2013.12.085.10.1016/j.cej.2013.12.085
  19. [19] Fuess LT, Garcia ML. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production. J Environ Manage. 2015;162:102-14. DOI: 10.1016/j.jenvman.2015.07.046.10.1016/j.jenvman.2015.07.04626233583
  20. [20] Schmidt T, Pröter J, Scholwin F, Nelles M. Anaerobic digestion of grain stillage at high organic loading rates in three different reactor systems. Biomass Bioenergy. 2013;55:285-90. DOI: 10.1016/j.biombioe.2013.02.010.10.1016/j.biombioe.2013.02.010
  21. [21] Carvalho F, Prazeres AR, Rivas J. Cheese whey wastewater: Characterization and treatment. Sci Total Environ. 2013;385-96. DOI: 10.1016/j.scitotenv.2012.12.038.10.1016/j.scitotenv.2012.12.03823376111
  22. [22] Perle M, Kimchie S, Shelef G. Some biochemical aspects of the anaerobic degradation of dairy wastewater. Water Res. 1995;29(6):1549-54. DOI: 10.1016/0043-1354(94)00248-6.10.1016/0043-1354(94)00248-6
  23. [23] Damasceno FRC, Freire DMG, Cammarota MC. Impact of the addition of an enzyme pool on an activated sludge system treating dairy wastewater under fat shock loads. J Chem Technol Biotechnol. 2008;83(5):730-8. DOI: 10.1002/jctb.1863.10.1002/jctb.1863
  24. [24] Erdirencelebi D. Treatment of high-fat-containing dairy wastewater in a sequential UASBR system: influence of recycle. J Chem Technol Biotechnol. 2011;86(4):525-33. DOI: 10.1002/jctb.2546.10.1002/jctb.2546
  25. [25] Tawfik A, Sobhey M, Badawy M. Treatment of a combined dairy and domestic wastewater in an up-flow anaerobic sludge blanket (UASB) reactor followed by activated sludge (AS system). Desalination. 2008;227(1-3):167-77. DOI: 10.1016/j.desal.2007.06.023.10.1016/j.desal.2007.06.023
  26. [26] Gupta P, Singh RS, Sachan A, Vidyarthi AS, Gupta A. Study on biogas production by anaerobic digestion of garden-waste. Fuel. 2012;95:495-8. DOI: 10.1016/j.fuel.2011.11.006.10.1016/j.fuel.2011.11.006
  27. [27] Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: A review. Bioresour Technol. 2008;99(10):4044-64. DOI: 10.1016/j.biortech.2007.01.057.10.1016/j.biortech.2007.01.057
  28. [28] Zhang B, Zhang LL, Zhang SC, Shi HZ, Cai WM. The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ Technol. 2005;26(3):329-40. DOI: 10.1080/09593332608618563.10.1080/09593332608618563
  29. [29] Latif MA, Mehta CM, Batstone DJ. Influence of low pH on continuous anaerobic digestion of waste activated sludge. Water Res. 2017;113:42-9. DOI: 10.1016/j.watres.2017.02.002.10.1016/j.watres.2017.02.002
  30. [30] Lin JG, Chang CN, Chang SC. Enhancement of anaerobic digestion of waste activated sludge by alkaline solubilization. Bioresour Technol. 1997;62(3):85-90. DOI: 10.1016/S0960-8524(97)00121-1.10.1016/S0960-8524(97)00121-1
  31. [31] Salehian P, Karimi K, Zilouei H, Jeihanipour A. Improvement of biogas production from pine wood by alkali pretreatment. Fuel. 2013;106:484-9. DOI: 10.1016/j.fuel.2012.12.092.10.1016/j.fuel.2012.12.092
  32. [32] Ali S, Hua B, Huang JJ, Droste RL, Zhou Q, Zhao W, et al. Effect of different initial low pH conditions on biogas production, composition, and shift in the aceticlastic methanogenic population. Bioresour Technol. 2019;289. DOI: 10.1016/j.biortech.2019.121579.10.1016/j.biortech.2019.12157931228742
  33. [33] Gupta VK, Mittal A, Malviya A, Mittal J. Adsorption of carmoisine A from wastewater using waste materials - Bottom ash and deoiled soya. J Colloid Interface Sci. 2009;335(1):24-33. DOI: 10.1016/j.jcis.2009.03.056.10.1016/j.jcis.2009.03.05619423127
  34. [34] Yin C, Shen Y, Zhu N, Huang Q, Lou Z, Yuan H. Anaerobic digestion of waste activated sludge with incineration bottom ash: Enhanced methane production and CO2 sequestration. Appl Energy. 2018;215:503-11. DOI: 10.1016/j.apenergy.2018.02.056.10.1016/j.apenergy.2018.02.056
  35. [35] Fialová J, Hybská H, Mitterpach J, Samešová D, Kovalíček J, Surový J. et al. Bottom ash from municipal solid waste incineration. Basic parameters and ecotoxicological properties. Environ Prot Eng. 2019;45(3):113-26. DOI: 10.37190/epe190308.10.37190/epe190308
  36. [36] ISO 10390:2005. Soil quality - Determination of pH. Available from: https://www.sutn.sk/eshop/public/standard_detail.aspx?id=99350.
  37. [37] EN 14346. Characterization of waste - Calculation of dry matter by determination of dry residue or water content, 2006, 24. Available from: https://www.en-standard.eu/din-en-14346-characterization-of-waste-calculation-of-dry-matter-by-determination-of-dry-residue-or-water-content/.
  38. [38] EN 15169:2007. Characterization of waste - Determination of loss on ignition in waste, sludge and sediments. Available from: https://www.en-standard.eu/din-en-15169-characterization-of-waste-determination-of-loss-on-ignition-in-waste-sludge-and-sediments/.
  39. [39] ISO 6060:1989. Water quality. Determination of the chemical oxygen demand. Available from: https://www.iso.org/standard/12260.html.
  40. [40] ISO 5815:1989 (modified) Water quality. Determination of biochemical oxygen demand after n days (BODn). Part 2: Method for undiluted samples. Available from: https://v1.cecdn.yun300.cn/site_1809120263/ISO%2005815-2-20031547185585637.pdf.
  41. [41] EN 15309:2007. Characterization of waste and soil - Determination of elemental composition by X-ray fluorescence. Available from: https://www.sutn.sk/eshop/public/standard_detail.aspx?id=104563.
  42. [42] EN 16192:2012. Characterization of waste. Analysis of eluates. Available from: https://www.en-standard.eu/din-en-16192-characterization-of-waste-analysis-of-eluates/.
  43. [43] EN ISO 11734:1998. Water quality. Evaluation of the “ultimate” anaerobic biodegradability of organic compounds in digested sludge. Method by measurement of the biogas production. Available from: https://www.sutn.sk/eshop/public/standard_detail.aspx?id=79120.
  44. [44] Sayedin F, Kermanshahi-Pour A, He QS. Evaluating the potential of a novel anaerobic baffled reactor for anaerobic digestion of thin stillage: Effect of organic loading rate, hydraulic retention time and recycle ratio. Renew Energy. 2019;135:975-83. DOI: 10.1016/j.renene.2018.12.084.10.1016/j.renene.2018.12.084
  45. [45] Comino E, Riggio VA, Rosso M. Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresour Technol. 2012;114:46-53. DOI: 10.1016/j.biortech.2012.02.090.10.1016/j.biortech.2012.02.09022444637
  46. [46] Kavacik B, Topaloglu B. Biogas production from co-digestion of a mixture of cheese whey and dairy manure. Biomass Bioenergy. 2010;34(9):1321-9. DOI: 10.1016/j.biombioe.2010.04.006.10.1016/j.biombioe.2010.04.006
  47. [47] Lo HM, Kurniawan TA, Sillanpää MET, Pai TY, Chiang CF, Chao KP, et al. Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors. Bioresour Technol. 2010;101(16):6329-35. DOI: 10.1016/j.biortech.2010.03.048.10.1016/j.biortech.2010.03.04820400299
  48. [48] Yin C, Shen Y, Yu Y, Yuan H, Lou Z, Zhu N. In-situ biogas upgrading by a stepwise addition of ash additives: Methanogen Adaption and CO2 sequestration. Bioresour Technol. 2019;282:1-8. DOI: 10.1016/j.biortech.2019.02.110.10.1016/j.biortech.2019.02.11030844515
  49. [49] Lo HM, Chiu HY, Lo SW, Lo FC. Effects of different SRT on anaerobic digestion of MSW dosed with various MSWI ashes. Bioresour Technol. 2012;125:233-8. DOI: 10.1016/j.biortech.2012.08.084.10.1016/j.biortech.2012.08.08423026339
  50. [50] Ward AJ, Hobbs PJ, Holliman PJ, Jones DL. Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol. 2008;99(17):7928-40. DOI: 10.1016/j.biortech.2008.02.044.10.1016/j.biortech.2008.02.04418406612
  51. [51] Latif MA, Mehta CM, Batstone DJ. Low pH anaerobic digestion of waste activated sludge for enhanced phosphorous release. Water Res. 2015;81:288-93. DOI: 10.1016/j.watres.2015.05.062.10.1016/j.watres.2015.05.06226081435
  52. [52] Ponsá S, Ferrer I, Vázquez F, Font X. Optimization of the hydrolytic-acidogenic anaerobic digestion stage (55°C) of sewage sludge: Influence of pH and solid content. Water Res. 2008; 42(14):3972-80. DOI: 10.1016/j.watres.2008.07.002.10.1016/j.watres.2008.07.00218687452
  53. [53] Sanberg M, Ahring BK. Anaerobic treatment of fish meal process wastewater in a UASB reactor at high pH. Appl Microbiol Biotechnol. 1992;36(6):800-4. DOI: 10.1007/BF00172198.10.1007/BF00172198
DOI: https://doi.org/10.2478/eces-2021-0023 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 339 - 354
Published on: Oct 11, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Dagmar Samešová, Juraj Poništ, Helena Hybská, Darina Veverková, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.