Have a personal or library account? Click to login
2,3-Dihydro-Quinazolin-4(1H)-One as a Fluorescent Sensor for Hg2+ Ion and its Docking Studies in Cancer Treatment Cover

2,3-Dihydro-Quinazolin-4(1H)-One as a Fluorescent Sensor for Hg2+ Ion and its Docking Studies in Cancer Treatment

Open Access
|Feb 2023

References

  1. [1] Li X, Tu Y, Tang L, Gao Q, Alonso PL. The role of research in China’s successful elimination of malaria. Nat Med. 2022;28:1336-8. DOI: 10.1038/s41591-022-01824-0.10.1038/s41591-022-01824-035641827
  2. [2] Mhaske SB, Argade NP. The chemistry of recently isolated naturally occurring quinazolinone alkaloids. Tetrahedron. 2006;62:9787-826. DOI: 10.1016/j.tet.2006.07.098.10.1016/j.tet.2006.07.098
  3. [3] Wang Y, Gao H, Gong C, Rizvi SFA, Liu X, Shi X, et al. N-quaternization of heterocyclic compound extended the emission to NIR with large Stokes shift and its application in constructing fluorescent probe. Spectrochim Acta, Part A. 2022;267:120566. DOI: 10.1016/j.saa.2021.120566.10.1016/j.saa.2021.12056634799226
  4. [4] Auti PS, George G, Paul AT. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Adv. 2020;10:41353-92. DOI: 10.1039/D0RA06642G.10.1039/D0RA06642G905792135516563
  5. [5] Hour MJ, Huang LJ, Kuo SC, Xia Y, Bastow K, Nakanishi Y, et al. 6-alkylamino-and 2, 3-dihydro-3’-methoxy-2-phenyl-4-quinazolinones and related compounds: Their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J Med Chem. 2000;43:4479-87. DOI: 10.1021/jm000151c.10.1021/jm000151c11087572
  6. [6] Spasov A, Ozerov A, Vassiliev P, Kosolapov V, Gurova N, Kucheryavenko A, et al. Synthesis and multifaceted pharmacological activity of novel quinazoline NHE-1 inhibitors. Sci Rep. 2021;11:24380. DOI: 10.1038/s41598-021-03722-w.10.1038/s41598-021-03722-w869249834934125
  7. [7] Cheke RS, Shinde SD, Ambhore JP, Chaudhari SR, Bari SB. Quinazoline: An update on current status against convulsions. J Mol Struct. 2022;1248:131384. DOI: 10.1016/j.molstruc.2021.131384.10.1016/j.molstruc.2021.131384
  8. [8] Mohajer F, Mohammadi Ziarani G, Badiei A. New advances on modulating nanomagnetic cores as the MRI-monitored drug release in cancer. J Appl Organomet Chem. 2021;1:143-7. DOI: 10.22034/jaoc.2021.301405.1032.
  9. [9] Zhang Y, Liu Q, Zhang X, Huang H, Tang S, Chai Y, et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J Nanobiotechnol. 2022;20:1-29. DOI: 10.1186/s12951-022-01472-z.10.1186/s12951-022-01472-z919477435701788
  10. [10] Yoo CL, Fettinger JC, Kurth MJ. Stannous chloride in alcohol: a one-pot conversion of 2-nitro-N-arylbenzamides to 2, 3-dihydro-1 H-quinazoline-4-ones. J Org Chem. 2005;70:6941-3. DOI: 10.1021/jo050450f.10.1021/jo050450f16095321
  11. [11] Chen J, Su W, Wu H, Liu M, Jin C. Eco-friendly synthesis of 2, 3-dihydroquinazolin-4 (1 H)-ones in ionic liquids or ionic liquid-water without additional catalyst. Green Chem. 2007;9:972-5. DOI: 10.1039/B700957G.10.1039/b700957g
  12. [12] Prakash M, Kesavan V. Highly enantioselective synthesis of 2, 3-dihydroquinazolinones through intramolecular amidation of imines. Org Lett. 2012;14:1896-9. DOI: 10.1021/ol300518m.10.1021/ol300518m22458670
  13. [13] Narasimhulu M, Lee YR. Ethylenediamine diacetate-catalyzed three-component reaction for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and their spirooxindole derivatives. Tetrahedron. 2011;67:9627-34. DOI: 10.1016/j.tet.2011.08.018.10.1016/j.tet.2011.08.018
  14. [14] Dabiri M, Salehi P, Otokesh S, Baghbanzadeh M, Kozehgary G, Mohammadi AA. Efficient synthesis of mono-and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using KAl (SO4) 2 · 12H2O as a reusable catalyst in water and ethanol. Tetrahedron Lett. 2005;46:6123-6. DOI: 10.1016/j.tetlet.2005.06.157.10.1016/j.tetlet.2005.06.157
  15. [15] Dabiri M, Salehi P, Baghbanzadeh M, Zolfigol MA, Agheb M, Heydari S. Silica sulfuric acid: An efficient reusable heterogeneous catalyst for the synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones in water and under solvent-free conditions. Catal Commun. 2008;9:785-8. DOI: 10.1016/j.catcom.2007.08.019.10.1016/j.catcom.2007.08.019
  16. [16] Aduroja O, Abiye I, Fathima A, Tadesse S, Ozturk B, Wachira J, et al. Microwave-assisted synthesis for a highly selective rhodamine 6G-derived fluorescent sensor and bioimaging. Inorg Chem Commun. 2023;147:110236. DOI: 10.1016/j.inoche.2022.110236.10.1016/j.inoche.2022.110236
  17. [17] Czarnik AW. Fluorescent chemosensors for ion and molecule recognition: ACS Symposium Series. Washington, DC: Am Chem Soc; 1993. DOI: 10.1021/BK-1993-0538.10.1021/bk-1993-0538
  18. [18] Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD. Fluorescent chemosensors: the past, present and future. Chem Soc Rev. 2017;46:7105-23. DOI: 10.1039/C7CS00240H.10.1039/C7CS00240H29019488
  19. [19] Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D. Review: Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol. 2003;18:149-75. DOI: 10.1002/tox.10116.10.1002/tox.1011612740802
  20. [20] Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U. Toxicity of mercury: Molecular evidence. Chemosphere. 2020;245:125586. DOI: 10.1016/j.chemosphere.2019.125586.10.1016/j.chemosphere.2019.12558631881386
  21. [21] Natasha, Shahid M, Khalid S, Bibi I, Bundschuh J, Khan Niazi N, et al. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Sci Total Environ. 2020;711:134749. DOI: 10.1016/j.scitotenv.2019.134749.10.1016/j.scitotenv.2019.13474932000322
  22. [22] Raj D, Maiti SK. Sources, toxicity, and remediation of mercury: an essence review. Environ Monit Assess. 2019;191:566. DOI: 10.1007/s10661-019-7743-2.10.1007/s10661-019-7743-231418123
  23. [23] Tseng CM, Hammerschmidt CR, Fitzgerald WF. Determination of methylmercury in environmental matrixes by on-line flow injection and atomic fluorescence spectrometry. Anal Chem. 2004;76:7131-6. DOI: 10.1021/ac049118e.10.1021/ac049118e15571370
  24. [24] Geddes CD, Lakowicz JR, Techert S. Current Developments of Fluorescence Spectroscopy. New York: Springer; 2005. DOI: 10.1007/b101259.10.1007/b101259
  25. [25] Harsha KG, Appalanaidu E, Chereddy NR, Baggi TR, Rao VJ. Pyrene tethered imidazole derivative for the qualitative and quantitative detection of mercury present in various matrices. Sens Actuators B: Chem. 2018;256:528-34. DOI: 10.1016/j.snb.2017.10.120.10.1016/j.snb.2017.10.120
  26. [26] Mukesh B, Rakesh K. Molecular docking: a review. Int J Res Ayurveda Pharm. 2011;2:1746-51.
  27. [27] Fan J, Fu A, Zhang L. Progress in molecular docking. Quant Biol. 2019;7:83-9. DOI: 10.1007/s40484-019-0172-y.10.1007/s40484-019-0172-y
  28. [28] Agarwal S, Mehrotra R. An overview of molecular docking. JSM Chem. 2016;4:1024-8.
  29. [29] Rahman MM, Islam MR, Rahman F, Rahaman MS, Khan MS, Abrar S, et al. Emerging promise of computational techniques in anti-cancer research: at a glance. Bioengineering. 2022;9:335. DOI: 10.3390/bioengineering9080335.10.3390/bioengineering9080335933212535892749
  30. [30] Tang J, Aittokallio T. Network pharmacology strategies toward multi-target anticancer therapies: from computational models to experimental design principles. Curr Pharm Des. 2014;20:23-36. DOI: 10.2174/13816128113199990470.10.2174/13816128113199990470389469523530504
  31. [31] Mohammadi Ziarani G, Akhgar M, Mohajer F, Badiei A, Luque R. SBA-Pr-Is-TAP functionalized nanostructured silica as a highly selective fluorescent chemosensor for Fe3+ and Cr2O72− ions in aqueous media. Nanomaterials. 2021;11:2533. DOI: 10.3390/nano11102533.10.3390/nano11102533853777934684975
  32. [32] Mohammadi Ziarani G, Akhgar M, Mohajer F, Badiei A. SBA-Pr-IS-MN synthesis and its application as Ag+ optical sensor in aqueous media. Res Chem Intermed. 2021;47:2845-55. DOI: 10.1007/s11164-021-04431-9.10.1007/s11164-021-04431-9
  33. [33] Mohammadi Ziarani G, Ebrahimi Z, Mohajer F, Badiei A. A fluorescent chemosensor based on functionalized nanoporous silica (SBA-15 SBA-IC-MN) for detection of Hg2+ in aqueous media. Arab J Sci Eng. 2021;47:397-406. DOI: 10.1007/s13369-021-05518-6.10.1007/s13369-021-05518-6
  34. [34] Karimi M, Badiei A, Mohammadi Ziarani G. A single hybrid optical sensor based on nanoporous silica type SBA-15 for detection of Pb2+ and I− in aqueous media. RSC Adv. 2015;5:36530-9. DOI: 10.1039/C5RA02692J.10.1039/C5RA02692J
  35. [35] Mohammadi Ziarani G, Afsar SY, Gholamzadeh P, Badiei A. Synthesis of quinazolinone derivatives through multicomponent/click reactions. Org Chem Res. 2019;5:64-72. DOI: 10.22036/org.chem.2018.109157.1117.
  36. [36] Ghodsi Mohammadi Z. Molecular docking and optical sensor studies based on 2,4-diamino pyrimidine-5-carbonitriles for detection of Hg2+. Environ Res. 2022;212:113245. DOI: 10.1016/j.envres.2022.113245.10.1016/j.envres.2022.11324535398086
  37. [37] Gaikwad M, Gaikwad S, Kamble R. Synthesis of novel series of 1-(6-hydroxy-4-(1H-indol-3-yl)-3,6-dimethyl-4,5,6,7-tetrahydro-1H-indazol-5-yl)ethan-1-oneas. Evaluations of their antimicrobial activity with insilco docking study. J Med Chem Sci. 2022;5:239-48. DOI: 10.26655/JMCHEMSCI.2022.2.11.10.26655/JMCHEMSCI.2022.2.11
  38. [38] De Savi C, Bradbury RH, Rabow AA, Norman RA, de Almeida C, Andrews DM, et al. Optimazation of a novel binding motif to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (AZD9496), a potent and orally bioavailable selective estrogen receptor downregulator and antagonist. J Med Chem. 2015;58:8128-40. DOI: 10.1021/acs.jmedchem.5b00984.10.1021/acs.jmedchem.5b0098426407012
DOI: https://doi.org/10.2478/cdem-2022-0004 | Journal eISSN: 2084-4506 | Journal ISSN: 1640-9019
Language: English
Page range: 25 - 33
Published on: Feb 1, 2023
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2023 Ghodsi Mohammadi Ziarani, Shadi Tahmasebi Ashtiani, Fatemeh Mohajer, Alireza Badiei, Sunil V. Gaikwad, Rajender S. Varma, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.