Have a personal or library account? Click to login
Physicochemical characterization of pig manure and its carbonaceous derivatives: Climate and sustainability impacts Cover

Physicochemical characterization of pig manure and its carbonaceous derivatives: Climate and sustainability impacts

Open Access
|Nov 2025

References

  1. Abhishek, K., Shrivastava, A., Vimal, V., Gupta, A.K., Bhujbal, S.K., Biswas, J.K., Singh, L., Ghosh, P., Pandey, A., Sharma, P., Kumar, M., 2022. Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. Science of the Total Environment 853, 158562. https://doi.org/10.1016/j.scitotenv.2022.158562
  2. Adamsen, A.P., Nyord, T., Hafner, S., 2021. The stability of pH of acidified stored manure slurry. Advisory note from DCA-Danish Center for Food and Agriculture, Aarhus University, Aarhus, Denmark. 2021 https://pure.au.dk/portal/files/216960350/Fasts_ttelse_af_syrebehov_190521.pdf
  3. AgriFarming, 2023. Pig Waste Management and Sustainable Manure Utilization. https://www.agrifarming.in/pig-waste-management-and-sustainable-manure-utilization
  4. Al-Kindi, A., Schlecht, E., Schiborra, A., Joergensen, R.G., 2016. Effects of quebracho tannin extract (Schinopsis balansae) and activated charcoal on feed intake and digestibility by goats and their faecal microbial biomass. Biological Agriculture & Horticulture 32(3), 159–169. https://doi.org/10.1080/01448765.2015.1108869
  5. Amer, M., Elwardany, A., 2020. Biomass carbonization. In: AlQubeissi, M., El-kharouf, A., Soyhan, H.S. (Eds.). Renewable energy resources, challenges, and application. IntechOpen https://doi.org/10.5772/intechopen.90480
  6. Ananna, F.H., Amin, M.G.M., Islam, D., Ahmed, T., Ashrafuzzaman, M., Aziz, M.G., 2021. Groundwater contamination risks with manure-borne microorganisms under different land-application options. Water Science and Engineering 14(4), 314–322. https://doi.org/10.1016/j.wse.2021.11.001
  7. Anigbo, N.J., Okpokwasili, G.C., Ogugbue, C.J., 2021. The physicochemical characteristics of fresh and old pig dung collected from three pig farms in Port Harcourt metropolis. GSC Biological and Pharmacological Sciences 16(3), 013–018. https://doi.org/10.30574/gscbps.2021.16.3.0254
  8. Antal, M.J., Grønli, M., 2003. The art, science, and technology of charcoal production. Industrial Engineering and Chemical Research 42, 1619–1640. https://doi.org/10.1021/ie0207919
  9. Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., Hayat, S., 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry 156, 64–77. https://doi.org/10.1016/j.plaphy.2020.08.042
  10. Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J.J., Belver, C., 2018. A review of the synthesis and characterization of biomass-derived carbons for adsorption of emerging contaminants from water. C – Journal of Carbon Research 4(4), 63. https://doi.org/10.3390/c4040063
  11. Bernado, M., Lapa, N., Goncalves, M., Mendes, B., Pinto, F., Fonseca I., 2012. Physicochemical properties of char obtained in the co-pyrolysis of the waste mixture. Journal of Hazardous Materials 219-220, 196–202. https://doi.org/10.1016/j.jhazmat.2012.03.077
  12. Bolan, N., Hoang, S.A., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., Joseph, S., Jung, S., Kim, K., 2022. Multiple applications of biochar beyond carbon storage. International Materials Reviews 67(2), 150–200. https/doi.org/10.1080/09506608.2021.1922047
  13. Borchard, N., Schirrmann, M., Cayuela, M.L., Kammann, C., Wrage-Mönnig, N., Estavillo, J.M., Fuertes-Mendizábal, T., Sigua, G., Spokas, K., Ippolito, J.A., Novak, J., 2019. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Science of the Total Environment 651, 2354–2364. https://doi.org/10.1016/j.scitotenv.2018.10.060
  14. Borhan, M.S., Rahman, S., Sarker, N.C., 2018. Characterizing corn and cattle manure-derived biochars relevant to their use as soil additives. Transactions of the ASABE 61(4), 1335–1349. https://doi.org/10.13031/trans.12753
  15. Brglez, S., 2021. Risk of toxic hydrogen sulfide concentrations on swine farms. Journal of Cleaner Production 312, 127746 https://doi.org/10.1016/j.jclepro.2021.127746
  16. Cantero, D., Jara, R., Navarrete, A., Pelaz, L., Queiroz, J., Rodríguez-Rojo, S., Cocero, M.J., 2019. Pretreatment processes of biomass for biorefineries: current status and prospects. Annual Review of Chemical and Biomolecular Engineering 10, 289–310. https://www.annualreviews.org/doi/abs/10.1146/annurev-chembio-eng-060718-030354
  17. Cao, T., Zheng, Y., Dong, H., 2023. Control of odour emissions from livestock farms: A review. Environmental Research 225, 115545. https://doi.org/10.1016/j.envres.2023.115545
  18. Catalano, A., Mariconda, A., D’Amato, A., Iacopetta, D., Ceramella, J., Marra, M., Saturnino, C., Sinicropi, M.S., Longo, P., 2024. Aldehydes: What We Should Know About Them. Organics 5(4), 395–428. https://doi.org/10.3390/org5040021
  19. Cely, P., Gascó, G., Paz-Ferreiro, J., Méndez, A., 2015. Agronomic properties of biochars from different manure wastes. Journal of Analytical & Applied Pyrolysis 111, 173–182. https://doi.org/10.1016/j.jaap.2014.11.014
  20. Cely, P., Tarquis, A.M., Paz-Ferreiro, J., Mendez, A., Gasco, G., 2014. Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar. Solid Earth 5, 585–594. https://doi.org/10.5194/se-5-585-2014
  21. Cheng, D., Gao, A., Cen, K., Zhang, J., Ca, X.Z., 2018. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Conversion and Management 169, 228–237. https://doi.org/10.1016/j.enconman.2018.05.063
  22. Cheng, F., Bayat, H., Jena, U., Brewer, C.E. 2020. Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: A review. Journal of Analytical and Applied Pyrolysis 147, 104780. https://doi.org/10.1016/j.jaap.2020.104780
  23. Chmielowiec-Korzeniowska, A., Tymczyna, L., Wlazło, Ł., Trawińska, B., Ossowski, M., 2022. Emissions of gaseous pollutants from pig farms and methods for their reduction – A review. Annals of Animal Science 22(1), 89–107. https://www.proquest.com/openview/432cfb-6169f56136caa82c841acd75be/1?pq-origsite=gscholar&cbl=1976406
  24. Cho, S., Hwang, O., Park, S., 2015. Effect of dietary protein levels on the composition of odorous compounds and bacterial ecology in pig manure. Asian-Australasian Journal of Animal Sciences 28(9), 13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4554878/
  25. Crombie, K., Masek, O., Sohi, S., Brownsort, P., Cross, A. 2013. The effect of pyrolysis conditions on biochar stability is determined by three methods. GCB Bioenergy 5, 122–131. https://doi.org/10.1111/gcbb.12030
  26. Dai, X., Karring, H., 2014. A determination and comparison of urease activity in the feces and fresh manures of pigs and cattle in relation to ammonia production and pH changes. Plos One 9(11), e110402. https://doi.org/10.1371/journal.pone.0110402
  27. Deenik, J.L., McClellan, T., Uehara, G., Antal, M.J., Campbell, S., 2010. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Science Society of America Journal 7, 1259–1270. https://doi.org/10.2136/sssaj2009.0115
  28. Ding, H., Zhang, Q., Zu, H., Vu, X., Chen, L., Wang, Z., Fang, J., 2021. Selection of copper and zinc, dosages in pig diets based on mutual protection. Ecotoxicology and Environmental Safety 216, 112177. https://doi.org/10.1016/j.ecoenv.2021.112177
  29. Domingues, R. R., Trugilho, P.F., Silva, C.A., de-Melo, I.C.N.A., Melo, L.C.A., Magriotis, Z.M., Sanchez-Monedero, M.A., 2017. Properties of biochar derived from wood and high-nutrient biomass with the aim of agronomic, and environmental benefits. PLoSONE 12, e0176884. https://doi.org/10.1371/journal.pone.0176884
  30. Ebc, H., 2012. European biochar certificate–guidelines for a sustainable production of biochar. European Biochar Foundation (EBC), Arbaz, Switzerland.
  31. Edo, F.A., 2023. Assessment of the socioenvironmental impacts of pig production and development of value-added products from piggery waste. PhD Thesis, Federal University of Technology Owerri, Nigeria.
  32. Edo, F.A., Ihejirika, C.E., Okoli, C.G., Okoli, I.C., 2021a. Sociocultural and production practices of pig farmers in relation to waste generation and disposal challenges in Imo state, Nigeria. International Journal of Agriculture and Rural Development 24(2), 6020–6030. https://www.ijard.com/journalarticles/Vol%2024(2)%202021/37%20Socio-Cultural%2C%20and%20Production%20Practices%20of%20Pig%20Farmers%20in%20Relation%20to%20Waste%20Generation%20and%20Disposal%20Challenges%20in%20Imo%20State%2C%20Nigeria.pdf
  33. Edo, F.A., Ihejirika, C.E., Okoli, C.G., Okoli, I.C., 2021b. Sociocultural and environmental impact of pig farming on nearby residents in Imo state, Nigeria. Nigerian Journal of Animal Science and Technology 4(3), 93–104. http://njast.com.ng/index.php/home/article/view/162
  34. Enyiukwu, D.N., Bassey, I.N., Nwaogu, G. A., Asamudo, N.U., Chukwu, L.A., Monday, E.A., Maranzu, J.O. 2021. Pig (Sus scrofa domesticus) dung and their associated fungi: Potential candidates for bioremediation and nutrient improvement of crude oil contaminated soils. Biodiversitas 22(8), 3276–3286. https://doi.org/10.13057/biodiv/d220822
  35. Ewuziem, E., 2021. Pollution and resource use efficiency among pig farmers in Imo state, Nigeria (Thesis). Repository.mouau.edu.ng. https://repository.mouau.edu.ng/work/view/pollution-and-resource-use-efficiency-among-pig-farmers-in-imo-state-nigeria-7-2
  36. FAOSTAT, 2023. Crops and livestock products. Food and Agriculture Organization of the United Nations, Rome, Italy. https://www.fao.org/faostat/en/#data/QCL
  37. Gaillard, C., Brossard, L., Dourmad, J., 2020. Improvement of feed and nutrient efficiency in pig production through precision feeding. Animal Feed Science and Technology 268, 114611. https://doi.org/10.1016/j.anifeedsci.2020.114611
  38. Ghosh, D., Maiti, S.K., 2020. Can biochar reclaim coal mine spoil? Journal of Environmental Management 272, 111097. https://doi.org/10.1016/j.jenvman.2020.111097
  39. Gunamantha, I.M., Widana, G.A.B., 2018. Characterization of the potential of biochar from cow and pig manure for geo-ecology application. IOP Conference Series: Earth and Environmental Science 131(1), 012055. https://iopscience.iop.org/article/10.1088/1755-1315/131/1/012055
  40. Guo, J., Zheng, L., Li, Z., Zhou, X., Cheng, S., Zhang, L., Zhang, Q., 2021. Effects of various pyrolysis conditions and feedstock compositions on the physicochemical characteristics of cow manure-derived biochar. Journal of Cleaner Production 311, 127458. https://doi.org/10.1016/j.jclepro.2021.127458
  41. Guo, P., Zhao, X., Feng, Q., Yang, Y., 2023. Branchwood properties of two Tilia species collected from natural secondary forests in Northeastern China. Forests 14(4), 760. https://doi.org/10.3390/f14040760
  42. He, C., Zhang, Z., Ge, C., Liu, W., Tang, Y., Zhuang, X., Qiu, R., 2019. Synergistic effect of hydrothermal co-carbonization of sewage sludge with fruit and agricultural wastes on hydrochar fuel quality and combustion behavior. Waste Management 100, 171–181. https://doi.org/10.1016/j.wasman.2019.09.018
  43. He, L. Y., He, L. K., Liu, Y. S., Zhang, M., Zhao, J. L., Zhang, Q.Q., Ying, G.G., 2019. Microbial diversity and antibiotic resistome in swine farm environments. Science of the Total Environment 685, 197–207. https://doi.org/10.1016/j.scitotenv.2019.05.369
  44. Heidainejad, Z., Dehghani, M.H., Heidari, M., Javedan, G., Ali, I., Sillanpaa, M., 2020. Methods for preparation and activation of activated carbon: A review. Environmental Chemistry Letters 18, 393–415. https://doi.org/10.1007/s10311-019-00955-0
  45. Hidayu, A.R., Muda, N., 2016. Preparation of impregnated activated carbon from palm kernel shell and coconut shell for CO2 capture. Procedia Engineering 148, 106–113. https://doi.org/10.1016/j.proeng.2016.06.463
  46. Hirunpraditkoon, S., Tunthong, N., Ruangchai, A., Nuithitku, K., 2011. Adsorption capacities of activated carbons prepared from bamboo by KOH activation. World Academy of Science, Engineering, and Technology 78, 711–715. https://doi.org/10.5281/zenodo.1055445
  47. Ho, S.M., 2022. A review of chemical activating agents on the properties of activated carbon. International Journal of Chemistry and Research S1(1), 1–13. https://mail.madridge.org/journal-of-chemistry-and-research/special-issue/ijcr-s1-001.pdf
  48. Hossain, M.K., Strezov, V., Chan, K.Y., Ziolkowski, A., Nelson, P.F., 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management 92(1), 223–228. https://doi.org/10.1016/j.jenvman.2010.09.008
  49. Huang, X., Jiang, Y., Yu, R., 2021. Popped rice biochar and superhydrophobic SiO2 / Popped rice biochar for oil adsorption. Silicon 13, 2661–2669. https://doi.org/10.1007/s12633-020-00621-z
  50. Ipiales, R.P., Mohedano, A.F., Diaz-Portuondo, E., Diaz, E., De la Rubia, M.A., 2023. Co-hydrothermal carbonization of swine manure and lignocellulosic waste: a new strategy for the integral valorization of biomass wastes. Waste Management 169, 267–275. https://doi.org/10.1016/j.wasman.2023.07.018
  51. Iregbu, G.U., 2014. Evaluation of the energy and combustion value of pig dung in its pure and combustion accelerants blended states. MSc Thesis: Department of Animal Science Technology, Federal University of Technology Owerri, Imo State, Nigeria.
  52. Iwanow, M., Gärtner, T., Sieber, V., König, B., 2020. Activated carbon as catalyst support: Precursors, preparation, modification, and characterization. Beilstein Journal of Organic Chemistry 16, 1188–1202. https://doi.org/10.3762/bjoc.16.104
  53. Jakobsen, L.K., Andersson, K.E., Norregaard, R., Olsen, L.H., 2019. Urine composition in pigs is regulated in both the ureter and the bladder. Physiological Research 68, 785–792. https://doi.org/10.33549/physiolres.934086
  54. Jha, R., Fouhse, J.M., Tiwari, U.P., Li, L., Willing, B.P., 2019. Dietary fiber and intestinal health of monogastric animals. Frontiers in Veterinary Science 6, 48. https://doi.org/10.3389/fvets.2019.00048
  55. Jiang, B., Lin, Y., Mbog, J.C., 2018. Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics. Bioresource Technology 270, 603–611. https://doi.org/10.1016/j.biortech.2018.08.022
  56. Kadurumba, C., Kadurumba, O.E., Enekwachi, M.E., 2019. Piggery waste management practices and environmental implication on human health in Rivers State, Nigeria. International Journal of Agricultural and Rural Development 22(1), 4161–4166.
  57. Kim, S.W., Gormley, A., Jang, K.B., Duarte, M.E., 2023. Current status of global pig production: an overview and research trends. Animal Bioscience 37(4), 719. https://doi.org/10.5713/ab.23.0367
  58. Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H, Soja, G., 2012. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality 41(4), 990–1000. https://doi.org/10.2134/jeq2011.0070
  59. Kolganova, A., Lal, R., Firkins, J., 2023. Biochar’s Electrochemical Properties Impact on Methanogenesis: Ruminal vs. Soil Processes. Journal of Agricultural Chemistry and Environment 12(1), 28–43. https://doi.org/10.4236/jacen.2023.121003
  60. Kowalski, Z., Makara, A., Fijorek, K., 2013. Changes in the properties of pig manure slurry. Acta Biochimica Polonica 60(4), 845–850. https://doi.org/10.18388/abp.2013_2070
  61. Kroninger, J., Lugato, E., Panagos, P., Kochupillai, M., Orgiazzi, A., Briones, M.J.I., 2021. Manure management and soil biodiversity: Toward more sustainable food production system in EU. Agricultural Systems 194, 103251. https://doi.org/10.1016/j.agsy.2012.103251
  62. Kumar, A., Bhattacharya, T., Mukherjee, S., Sarkar, B., 2022. A perspective on biochar for repairing damages in the soil–plant system caused by climate change-driven extreme weather events. Biochar 4(1), 22. https://doi.org/10.1007/s42773-022-00148-z
  63. Kumaragamage, D., Akinremi, O.O., Racz, G.J., 2016. Comparison of nutrient and metal loadings with the application of swine manure slurries and their liquid separates to soils. Journal of Environmental Quality 45(5), 1769–1775. https://doi.org/10.2134/jeq2016.04.0130
  64. Kuo, Y. L., Lee, C.H., Jien, S.H., 2020. Reduction of nutrient leaching potential in coarse-textured soil by using biochar. Water 12(7), 2012. https://doi.org/10.3390/w12072012
  65. Lan, W., Yao, C., Lou, F., Jin, Z., Lu, S., Li, J., Wang, X., Hu, A., 2022. Effects application of pig manure on the accumulation of heavy metals in rice. Plants 11(2), 207. https://doi.org/10.3390/plants11020207
  66. Lee, S.A., Lopez, D.A., Stein, H.H., 2023. Mineral composition and phosphorus digestibility in feed phosphates fed to pigs and poultry. Animal Bioscience 36(2), 167–174. https://doi.org/10.5713/ab.22.0322
  67. Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li., H., Huang, H., 2021. An overview on engineering the surface area and porosity of biochar. Science of the Total Environment 763, 144204. https://doi.org/10.1016/j.scitotenv.2020.144204
  68. Lentz, Z., Kolar, P., Classen, J.J., 2019. Valorization of swine manure into hydrochars. Processes 7(9), 560. https://doi.org/10.3390/pr7090560
  69. Li, C., Xie, S., Wang, Y., Pan, X., Yu, G., Zhang, Y., 2020b. Simultaneous heavy metal immobilization and antibiotics removal during synergistic treatment of sewage sludge and pig manure. Environmental Science and Pollution Research, 27 30323–30332. https://doi.org/10.1007/s11356-020-09230-0
  70. Li, C., Zhang, C., Gao, G., Gholizadeh, M., Zhang, S., Xu, L., Zhang, L., Li, Q., Hu, X., 2020a. Interaction of volatiles from co-pyrolysis of pig manure with cellulose/glucose and their effects on char properties. Journal of Environmental Chemical Engineering 8(6), 104583. https://doi.org/10.1016/j.jece.2020.104583
  71. Li, F., Wu, X., Ji, W., Gui, X., Chen, Y., Zhao, J., Zhou, C., Ren, T., 2020. Effects of pyrolysis temperature on properties of swine manure biochar and its environmental risks of heavy metals. Journal of Analytical and Applied Pyrolysis, 152, 104945. https://doi.org/10.1016/j.jaap.2020.104945
  72. Lim, J., Yang, S.H., Kim, B.S., Lee, E.Y., 2018. Comparison of microbial communities in swine manure at various temperatures and storage time. Asian-Australian Journal of Animal Science 31(8), 1373–1380. https://doi.org/10.5713%2Fajas.17.0704
  73. Lima, I., Ro, K., Reddy, G., Boykin, D., Klasson, K., 2015. Efficacy of chicken litter and wood biochars and their activated counterparts in heavy metal clean up from wastewater. Agriculture 5(3), 806–825. https://doi.org/10.3390/agriculture5030806
  74. Liu, Y., Wang, F., Yin, Z., Jia, W., Xiao, H., Lin, Q., Feng, Y., 2020. Immobilization of lead and cadmium in soil using biochars derived from pig manure and Suaeda glauca. Bulletin of Environmental Contamination and Toxicology, 105, 146–154. https://doi.org/10.1007/s00128-020-02886-x
  75. Liu, Y., Zhu, J., Ye, C., Zhu, P., Ba, Q., Pang, J., Shu, L., 2018. Effects of biochar application on the abundance and community composition of denitrifying bacteria in a reclaimed soil from coal mining subsidence area. Science of the Total Environment 625, 1218–1224. https://doi.org/10.1016/j.scitotenv.2018.01.003
  76. Lonappan, L., Rouissi, T., Liu, Y., Brar, S. K., Surampalli, R.Y., 2019. Removal of diclofenac using microbiochar fixed-bed column bioreactor. Journal of Environmental Chemical Engineering 7(1), 102894. https://doi.org/10.1016/j.jece.2019.102894
  77. Machete, J.B., Chabo, R.G., 2020. A review of piggery manure management: Generally, across Western, Asian, and African countries. Botswana Journal of Agriculture and Applied Sciences 14(1), 17–27. https://bojaas.buan.ac.bw/index.php/jaas/article/view/17
  78. Makara, A., Kowalski, Z., 2018. Selection of pig manure management strategies: A case study of Polish farms. Journal of Cleaner Production 172, 187–195. https://doi.org/10.1016/j.jclepro.2017.10.095
  79. Malyan, S.K., Kumar, S.S., Fagodiya, R.K., Ghosh, P., Kumar, A., Singh, R., Singh, L., 2021. Biochar for environmental sustainability in the energy-water-agroecosystem nexus. Renewable and Sustainable Energy Reviews 149, 111379. https://doi.org/10.1016/j.rser.2021.111379
  80. Man, K.Y., Chow, K.L., Man, Y.B., Mo, W.Y., Wong, M.H., 2021. Use of biochar as feed supplements for animal farming. Critical Reviews in Environmental Science and Technology 51(2), 187–217. https://doi.org/10.1080/10643389.2020.1721980
  81. Marszelek, M., Kowalski, Z., Makara, A., 2019. The possibility of contamination of the water‒soil environment as a result of the use of pig slurry. Ecological Chemistry and Engineering Science 26(2), 313–330. https://intapi.sciendo.com/pdf/10.1515/eces-2019-0022
  82. Mateos, G.G., Corrales, N.L., Talegón, G., Aguirre, L., 2024. Pig meat production in the European Union-27: Current status, challenges, and future trends. Animal Bioscience 37(4), 755. https://doi.org/10.5713/ab.23.0496
  83. Meng, J., Feng, X., Dai, Z., Liu, X., Wu, J., Xu, J., 2014. Adsorption characteristics of Cu (II) from aqueous solution onto biochar derived from swine manure. Environmental Science and Pollution Research 21, 7035–7046. https://doi.org/10.1007/s11356-014-2627-z
  84. Meng, J., Wang, L., Zhong, L., Liu, X., Brookes, P.C., Xu, J., Chen, H., 2017. Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure. Chemosphere 180, 93–99. https://doi.org/10.1016/j.chemosphere.2017.04.009
  85. Mia, S., Singh, B., Dijkstra, F.A., 2017. Aged biochar affects gross nitrogen mineralization and recovery: a 15 N study in two contrasting soils. GCB Bioenergy 9(7), 1196–1206. https://doi.org/10.1111/gcbb.12430
  86. Míguez, J. L., Porteiro, J., Behrendt, F., Blanco, D., Patiño, D., Dieguez-Alonso, A., 2021. Review of the use of additives to mitigate operational problems associated with the combustion of biomass with high content in ash-forming species. Renewable and Sustainable Energy Reviews 141, 110502. https://doi.org/10.1016/j.rser.2020.110502
  87. Mopoung, S., Dejang, N., 2021. Activated carbon preparation from eucalyptus wood chips using continuous carbonization-steam activation process in a batch intermittent rotary kiln. Scientific Report 11, 13948 (2021). https://doi.org/10.1038/s41598-021-93249-x
  88. Mpendulo, T., Chimonyo, M., Ndou, S.P., Bakare, A.G., 2018. Fiber source and inclusion level affect characteristics of excreta from growing pigs. Asia-Australia Journal of Animal Science 31(5), 755. https://doi.org/10.5713%-2Fajas.14.0611
  89. Mukome, F.N., Buelow, M.C., Shang, J., Peng, J., Rodriguez, M., Mackay, D.M., Pignatello, J.J., Sihota, N., Hoelen, T.P., Parikh, S.J., 2020. Biochar amendment as a remediation strategy for surface soils impacted by crude oil. Environmental Pollution 265, 115006. https://doi.org/10.1016/j.envpol.2020.115006
  90. Nasir, M.I., Hossain, M.Z., Charpentier, P.A. 2018. Synthesis and Characterization of Date Palm Fiber-Based Bio-Char and Activated Carbon and its Utilization for Environmental Remediation. Journal of Petroleum Research and Studies 8(2), 209–222. https://www.iasj.net/iasj/download/9490ba1c55d66f89
  91. Navarro, D.M., Bruininx, E.M., de Jong, L., Stein, H.H., 2018. Effects of physicochemical characteristics of feed ingredients on the apparent total tract digestibility of energy, DM, and nutrients by growing pigs. Journal of Animal Science 96(6), 2265–2277. https://doi.org/10.1093/jas/sky149
  92. Nguyen, H.N., Pignatello, J.J., 2013. Laboratory tests of biochars as absorbents for use in recovery or containment of marine crude oil spills. Environmental Engineering Science 30(7), 374–380. https://doi.org/10.1089/ees.2012.0411
  93. Ngwabie, N.M., Wirlen, Y.L., Yinda, G.S., Vanderzaag, A.C., 2018. Quantifying greenhouse gas emissions from municipal solid waste dumpsites in Cameroun. Waste Management 87, 947–953. https://doi.org/10.1016/j.wasman.2018.02.048
  94. Ohanaka A.U.C., 2022. Morpho-physiological responses and performance of chicken fed activated charcoal-palm sap (ACAPS) supplemented diets. PhD Thesis, Federal University of Technology, Owerri, Nigeria.
  95. Ohanaka, A.U.C., Ukonu, E.C., Ogbuewu, I.P., Etuk, I.F., Okoli, I.C., 2021. Evaluation of the physic-chemical properties of agro-waste derived activated charcoal as potential feed additives in livestock production. International Journal of Agriculture and Rural Development 24(1), 5711–5719. https://www.ijard.com/Vol%2024%20No1%202021
  96. Okey, S.N., Ogbu, C.C., Okoli, I.C., Okey, O.N., Akpa, C.A.N., Afolabi, K.D., Udo, U.J., 2022. Effect of dietary inclusion of agricultural waste-derived activated charcoal on hematological and serum biochemical indices of layer chickens. Asian Journal of Research in Animal and Veterinary Sciences 10(4), 11. http://go7publish.com/id/eprint/1626/1/220-Article%20Text-385-1-10-20221119.pdf
  97. Okoli, C.G., Edo, F.A., Ogbuewu, I.P., Nwajiobi, I.J., Enemor, V.H.A., Okoli, I.C., 2019. Biochemical Values of Pig Dung Collected from Different Locations in Imo state, Southern Nigeria. Asian Journal of Biological Science 12, 470–476. https://scialert.net/fulltext/?doi=ajbs.2019.470.476&org=12
  98. Okoli, I.C., 2021a. Activated charcoal 1: Historical overview, current, and future uses. https://researchtropica.com/activated-charcoal-1-historical-overview-current-and-future-uses/. Accessed 22/9/2021.
  99. Okoli, I.C., 2021b. Activated charcoal 3: Production from biomass wastes. https://researchtropica.com/activated-charcoal-3-production-from-biomass-wastes/. Accessed 22/9/2021.
  100. Okoli, I.C., Alaehie, D.A., Okoli, C.G., Akano, E.C., Ogundu, U.E., Akujobi, C.T., Onyicha, I.D., Chinweze, C.E., 2007. Aerial pollutant gases concentrations in tropical pig pen environment in Nigeria. Nature and Science 4(4), 1–5. https://scialert.net/fulltext/?doi=rjes.2007.110.115
  101. Okoli, I.C., Alaoma, O.R., Opara, M.N., Uchegbu, M.C., Ezeokeke, C.T., Durunna, C.S., Nnadi, F.N., Iheukwumere, F.C., Okeudo, N.J., 2009. Sociocultural characteristics of educated smallholder pig farmers and the effects of their feeding practices on the performance of pigs in Imo State, Nigeria. Report and Opinion 1(4), 59–65. http://www.sciencepub.net/report/0104/report0104.pdf#page=62
  102. Okoli, I.C., Nwogu, C.M., Etuk, I.F., Omede, A.A., Ogbuewu, I.P., Aladi, N.O., Okoro, V.M.O., Opara, M.N., Ezema, C., Uchegbu, M.C., Madubuike, F.N., 2014. Plantain ash enhances dietary mineral element absorption in pullets. Iranian Journal of Applied Animal Science 4(2), 351–360. https://journals.iau.ir/article_513683.html
  103. Okoli, I.C., Uchegbu, M.C., Alaoma, O.R., Omede, A.A., Opara, M.N., Ekenyem, B.U., 2011. Compositional and biochemical characteristics of grower pig rations compounded by smallholder pig farmers in Imo State, Nigeria. Proceedings of the 3rd International Conference on Sustainable Animal Agriculture for Developing Countries, July 26–29, 2011, Nakhon Ratchasima Thailand. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20113387219
  104. Okorogbona, A., Adebisi, L.O., 2012. Animal manure for smallholder agriculture in South Africa. In: Lichtfouse, E. (Ed.). Farming for Food and Water Security. Sustainable Agriculture Review, 10 Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4500-1_9
  105. Osman, A.I., Fawzy, S., El-Azazy, M.F.M., Elgarahy, A.M., Fahim, R.A., Abdel Maksoud, M.I.A., Ajlan, A.A., Yousry, M., Saleem, Y., Rooney, D.W., 2022. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: A review. Environmental Chemistry Letters 20, 2385–2485. https://doi.org/10.1007/s10311-022-01424-x
  106. Paradeca, F., Pinto, F., Gulyurtlu, I., Cabrita, I., Lapa, N., 2009. Study of the copyrolysis of biomass and plastic wastes. Clean Technologies and Environmental Policy 11(1), 115–122. https://doi.org/10.1007/s10098-008-0176-1
  107. Qiu, J., Souza, M., Robles Aguilar, A. A., Ghysels, S., Ok, Y.S., Ronsse, F., Meers, E., 2022. Improving biochar properties by co-pyrolysis of pig manure with bioinvasive weed for use as the soil amendment. Chemosphere 312(Pt 1), 137229. https://doi.org/10.1016/j.chemosphere.2022.137229
  108. Qomariyah, N., Ella, A., Ahmad, S.N., Yusriani, Y., Sholikin, M.M., Prihambodo, T.R., Retnani, Y., Jayanegara, A., Wina, E., Permana, I.G., 2023. Dietary biochar as a feed additive for increasing livestock performance: A meta-analysis of in vitro and in vivo experiment. Czech Journal of Animal Science 68(2), 72–86. https://www.agriculturejournals.cz/pdfs/cjs/2023/02/04.pdf
  109. Radenahmad, N., Tasfiah, A, Saghir M., Taweekun, J., Saifullah, M., Bakar, A., Kalam, A., 2020. A review on biomass-derived syngas for SOFC-based combined heat and power application. Renewable and Sustainable Energy Reviews 119, 109560. https://doi.org/10.1016/j.rser.2019.109560
  110. Raj, K.G., Joy, P.A., 2015. Coconut shell-based activated carbon–iron oxide magnetic nanocomposite for fast and efficient removal of oil spills. Journal of Environmental Chemical Engineering 3(3), 2068–2075. https://doi.org/10.1016/j.jece.2015.04.028
  111. Rapatsa, M.M., Moyo, G., 2013. Performance evaluation of chicken, cow, and pig manure in the production of natural fish food in aquadams stocked with Oreochromis mossambicus. Physics and Chemistry of the Earth, Parts A/B/C 66, 68–74. https://doi.org/10.1016/j.pce.2013.08.009
  112. Rashid, A., Schutte, B.J., Ulery, A., Deyholos, M.K., Sanogo, S., Lehnhoff, E.A., Beck, L., 2023. Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy 13(6), 1521. https://doi.org/10.3390/agronomy13061521
  113. Reza, M.S., Yun, C.S., Afroze, S., Radenahmad, N., Abu Bakar, M.S., Saidur, R., Taweekun, J., Azad, A.K., 2020. Preparation of activated carbon from biomass and its applications in water and gas purification. A review. Arab Journal of Basic and Applied Sciences 27(1), 208–238. https://doi.org/10.1080/25765299.2020.1766799
  114. Ro, K.S., Hunt, P.G., Jackson, M.A., Compton, D.L., Yates, S.R., Cantrell, Chang, S., 2014. Copyrolysis of swine manure with agricultural plastic waste: Laboratory-scale study. Waste Management 34(8), 1520–1528. https://doi.org/10.1016/j.wasman.2014.04.001
  115. Ro, K.S., Libra, J.A., Bae, S., Berge, N.D., Flora, J.R., V., Pacenka, R., 2019. Combustion behavior of animal-manure-based hydrochar and pyrochar. A.C.S. Sustainable Chemistry and Engineering 7, 470–478. https://doi.org/10.1021/acssuschemeng.8b03926
  116. Sarfaraz, O., da Silva, L.S., Drescher, G.L., Zafar, M., Severo, F.F., Kokkonen, A., Molin G.D., Shafi, M.I., Shafique, Z., Solaiman, Z., 2020. Characteristics and carbon mineralization of biochars produced from different animal manures and plant residues. Scientific Report 10, 955. https://doi.org/10.1038/s41598-020-57987-8
  117. Schmidt, H.P., Hagemann, N., Draper, K., Kammann, C., 2019. The use of biochar in animal feeding. PeerJ 7, e7373. https://peerj.com/articles/7373/
  118. Shah, M.S., Khan, M.N.S., Kumar, V., 2018. Biomass residue characterization for their potential application as biofuels. Journal of Thermal Analysis and Calorimetry 134, 2137–2145. https://doi.org/10.1007/s10973-018-7560-9
  119. Sharara, M.A., Sadaka, S.S., 2018. Opportunities and barriers to bioenergy conversion techniques and their potential implementation on swine manure. Energies 11(4), 957. https://doi.org/10.3390/en11040957
  120. Sharma, N.K., Choct, M., Wu, S., Swick, R.A., 2017. Nutritional effects on odour emissions in broiler production. World’s Poultry Science Journal 73(2), 257–280. https://doi.org/10.1017/S0043933917000046
  121. Shi, W., Lian, W., Tian, S., Gong, X., Yu, Q., Guo, Z., Zhang, X., Ma, B., Bian, R., Zheng, J., Pan, G., 2023. A review of agronomic and environmental properties of inorganic compounds in biochars. Current Research in Environmental Sustainability 5, 100226. https://doi.org/10.1016/j.crsust.2023.100226
  122. Sohaimi, K.S.A., Ngadi, N., 2016. Removal of oil using activated carbon from textile sludge biochars. Applied Mechanics and Materials 818, 237–241. https://doi.org/10.4028/www.scientific.net/AMM.818.237
  123. Song, C., Yuan, W., Shan, S., Ma, Q., Zhang, H., Wang, X., Niazi, N.K., Wang, H., 2020. Changes of nutrients and potentially toxic elements during hydrothermal carbonization of pig manure. Chemosphere 243, 125331. https://pubmed.ncbi.nlm.nih.gov/31995863/
  124. Song, J.M., 2024. Emission characteristics of odorous compounds from a swine farmon Jejuisland, Korea. Atmosphere 15(3), 327. https://doi.org/10.3390/atmos15030327
  125. Sposito, G., 1989. The chemistry of soils. Oxford University Press, New York.
  126. Statista, 2023. Leading countries in pork production in Africa 2020. https://www.statista.com/statistics/1290476/production-volume-of-pork-meat-in-africa-by-countries/
  127. Štefelová, J., Slovák, V., Siqueira, G., Olsson, R.T., Tingaut, P., Zimmermann, T., Sehaqui, H., 2017. Drying and pyrolysis of cellulose nanofibers from wood, bacteria, and algae for char application in oil absorption and dye adsorption. ACS Sustainable Chemistry & Engineering 5(3), 2679–2692. https://doi.org/10.1021/acssuschemeng.6b03027
  128. Sun, T., Levin, B.D.A., Guzman, J.J.L., Enders, A., Muller, D.A., Angenent, L.T., Lehmann, J., 2017. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nature Communications 8(1), 14873. https://doi.org/10.1038/ncomms14873
  129. Sun, X., Shan, R., Li, X., Pan, J., Liu, X., Deng, R., Song, J., 2017. Characterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application. GCB Bioenergy 9, 1423–1435. https://doi.org/10.1111/gcbb.12435
  130. Takaya, C.A., Fletcher, L.A., Singh, S., Okwuosa, U.C., Ross, A.B., 2016. Recovery of phosphate with chemically modified biochars. Journal of Environmental Chemical Engineering 4(1), 1156–1165. https://doi.org/10.1016/j.jece.2016.01.011
  131. Teoh, R., Caro, E., Holman, D.B., Joseph, S., Meale, S.J., Chaves, A.V., 2019. Effects of hardwood biochar on methane production, fermentation characteristics, and the rumen microbiota using rumen simulation. Frontiers in Microbiology 10, 1534. https://doi.org/10.3389/fmicb.2019.01534
  132. Tomczyk, A., Sokolowska, Z., Boguta, P., 2020. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Review in Environmental Science and Technology 19, 191–215. https://doi.org/10.1007/s11157-020-09523-3
  133. Trabue, S.L., Kerr, B.J., Scoggin, K.D., Andersen, D., Van Weelden, M., 2021. Swine diets impact manure characteristics and gas emissions: Part I protein level. Science of the Total Environment 755, 142528. https://doi.org/10.1016/j.scitotenv.2020.142528
  134. Tripathi, M., Sahu, J.N., Ganesan, P., 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Review 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122
  135. Tripathi, N., Hills, C.D., Singh, R.S., Atkinson, C.J., 2019. Biomass waste utilization in low-carbon products: harnessing a major potential resource. NJP Climate and Atmospheric Science 2(1), 35. https://doi.org/10.1038/s41612-019-0093-5
  136. Trujillo, G.D., Borquez, G.J.L, Pinos-Rodriguez, J.M., Dominguez-Vara, I.A., Rojo, R.R., 2014. Nutritive value of ensiled pig excreta, poultry litter, or urea with molasses or bakery byproducts in diets for lambs. South African Journal of Animal Science 44(2), 114–122. https://doi.org/10.4314/sajas.v44i2.3
  137. Tsai, W.T., Liu, S.C., Chen, H.R., Chang, Y.M., Tsai, Y.L., 2012. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 89(2), 198–203. https://doi.org/10.1016/j.chemosphere.2012.05.085
  138. Tullus, A., Mandre, M., Soo, T., Tullus, H., 2010. Relationships between cellulose, lignin, and nutrients in the stem wood of hybrid aspen in Estonian plantations. Cellulose Chemistry & Technology 44(4), 101. https://www.cellulosechemtechnol.ro/pdf/CCT44,4-6(2010)/101-109.pdf
  139. Udebuani, A.C., Nwajiobi, I.J., Okoli, I.C., Ozor, P.T.E., 2018b. Proximate and elemental compositions of animal dung collected from Owerri, Southeast Nigeria. In: Exploring Science and Technology: Innovations for Sustainable Livestock Development. 43rd Annual Conference of the Nigerian Society for Animal Production, March 18–22, 2018, FUT Owerri, pp. 1439–1441. https://njap.org.ng/index.php/njap/article/view/6586
  140. Udebuani, A.C., Nwajiobi, I.J., Ozor, P.T.E., 2018a. Microbial loads and profiles of poultry, cattle and pig dung produced: In Owerri, Southeast Nigeria. In: Exploring Science and Technology: Innovations for Sustainable Livestock Development. Proceedings of 43rd Annual Conference of the Nigerian Society for Animal Production, March 18–22, 2018, FUT Owerri, pp. 1442–1444. https://njap.org.ng/index.php/njap/article/view/6582
  141. Udebuani, A.C., Okoli, I.C., Nwigwe, H.C., Ozoh, P.T.E., 2012. The value of animal manure in the enhancement of bioremediation processes in petroleum hydrocarbon contaminated agricultural soils. Journal of Agricultural Technology 8(6), 1935–1952. https://www.cabidigitallibrary.org/doi/full/10.5555/20133001837
  142. Vanotti, M.B., García-González, M.C., Szögi, A.A., Harrison, J.H., Smith, W.B., Moral, R., 2020. Removing and recovering nitrogen and phosphorus from animal manure. In: Waldrip, H.M., Pagliari, P.H., He, Z. (Eds.). Animal manure: Production, characteristics, environmental concerns, and management 67, 275–321. https://doi.org/10.2134/asaspecpub67.c22
  143. Vuppaladadiyam, A.K., Liu, H., Zhao, M., Soomro, A.F., Memon, M.Z., DuPont, V., 2019. Thermogravimetric and kinetic analysis to discern synergy during the co-pyrolysis of microalgae and swine manure digestate. Biotechnology for Biofuels and Bioproducts 12, 170. https://doi.org/10.1186/s13068-019-1488-6
  144. Wang, L., Li, D., 2024. Current status, challenges and prospects for pig production in Asia. Animal Bioscience 37(4), 742. https://doi.org/10.5713/ab.23.0303
  145. Wang, Y., Dong, H., Zhu, Z., Gerber, P. J., Xin, H., Smith, P., Opio, C., Steinfeld, H., Chadwick, D. 2017. Mitigating greenhouse gas and ammonia emissions from swine manure management: A system analysis. Environmental Science and Technology 51, 4503–4511. https://doi.org/10.1021/acs.est.6b06430
  146. Wnetrzak, R., Leahy, J.J., Chojnacka, K. W., Saeid, A., Novotny, E., Jensen, L.S., Kwapinski, W., 2014. Influence of pig manure biochar mineral content on Cr (III) sorption capacity. Journal of Chemical Technology & Biotechnology 89(4), 569–578. https://doi.org/10.1002/jctb.4159
  147. Wu, Q., Wang, H., Zheng, X., Liu, F., Wang, A., Zou, D., Yuan, J., Xiao, Z., 2020. Thermochemical liquefaction of pig manure: Factors influencing on oil. Fuel 264, 116884. https://doi.org/10.1016/j.fuel.2019.116884
  148. Xu, D., Wen, L., Xue, L., Jang, Z., 2014. Analysis of direct combustion characteristics of pig manure based on thermogravimetry. Transactions of the Chinese Society of Agricultural Engineering 30(5), 162–168. https://www.cabidigitallibrary.org/doi/full/10.5555/20143179382
  149. Xu, X., Cao, X., Zhao, L., 2013. Comparison of rice husk and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere 92(8), 955–961. https://doi.org/10.1016/j.chemosphere.2013.03.009
  150. Xu, Z., He, M., Xu, X., Cao, X., Tsang, D.C., 2021. Impacts of different activation processes on the carbon stability of biochar for oxidation resistance. Bioresource Technology 338, 125555. https://doi.org/10.1016/j.biortech.2021.125555
  151. Yahya, M.A., Mansor, M.H., Zolkarnaini, W.A.A.W., Rusli, N.S., Aminuddin, A., Mohamad, K., Sabhan, F.A.M., Atik, A.A.A., Ozair, L.N., 2018. A brief review on activated carbon derived from agriculture byproducts. AIP Conference Proceedings 2018. https://doi.org/10.1063/1.5041244
  152. Yang, L., Huang, T., Jiang, X. X., Jiang, W., 2016. Effect of steam and CO2 activation on characteristics and desulfurization performance of pyrolusite modified activated carbon. Adsorption 22, 1099–1107. https://doi.org/10.1007/s10450-016-9832-7
  153. Yargicoglu, E.N., Sadasivam, B.Y., Reddy, K.R., Spokas, K., 2015. Physical and chemical characterization of waste wood-derived biochar. Waste Management 36, 256–268. https://doi.org/10.1016/j.wasman.2014.10.029
  154. Yuan, J., Wen, Y., Dionysiou, D.D., Sharma, V.K., Ma, X., 2022. Biochar as a novel carbon-negative electron source and mediator: electron exchange capacity (EEC) and environmentally persistent free radicals (EPFRs): a review. Chemical Engineering Journal 429, 132313. https://doi.org/10.1016/j.cej.2021.132313
  155. Zhang, J., Li, C., Li, G., He, Y., Yang, J., Zhang, J., 2021. Effect of biochar on heavy metal bioavailability and uptake by tobacco (Nicotiana tabacum) in two soils. Agriculture, Ecosystem and Environment 317, 107453. https://doi.org/10.1016/j.agee.2021.107453
  156. Zhang, R.M., Liu, X., Wang, S. L., Fang, L. X., Sun, J., Liu, Y.H., Liao, X.P., 2021. Distribution patterns of antibiotic resistance genes and their bacterial hosts in pig farm wastewater treatment systems and soil fertilized with pig manure. Science of the Total Environment 758, 143654. https://doi.org/10.1016/j.scitotenv.2020.143654
  157. Zhang, X., Zhang, P., Yuan, X., Li, Y., Han, L., 2020. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar. Bioresource Technology 29, 122318. https://doi.org/10.1016/j.biortech.2019.122318
  158. Zhang, Y., Zhu, Z., Zheng, Y., Chen, Y., Yin, F., Zhang, W., Dong, H., Xin, H., 2019. Characterization of volatile organic compound (VOC) emissions from swine manure biogas digestate storage. Atmosphere 10(7), 411. https://doi.org/10.3390/atmos10070411
  159. Zhao, J., Bai, Y., Zhang, G., Liu, L., Lai, C., 2020. Relationship between dietary fiber fermentation and volatile fatty acids concentration in growing pigs. Animals 10(2), 263. https://doi.org/10.3390/ani10020263
  160. Zhao, L., Cao, X., Masek, O., Zimmerman, A., 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials 256, 1–9. https://doi.org/10.1016/j.jhazmat.2013.04.015
  161. Zubbri, N.A., Mohamed, A.R., Lahijani, P., Mohammadi, M., 2021. Low-temperature CO2 capture on biomass-derived KOH-activated hydrochar established through hydrothermal carbonization with water-soaking pretreatment. Journal of Environmental Chemical Engineering 9(2), 105074. https://doi.org/10.1016/j.jece.2021.105074
  162. Wang, T., Sun, H., Ren, X., Li, B., Mao, H., 2018. Adsorption of heavy metals from aqueous solution by UV-mutant Bacillus subtilis loaded on biochars derived from different stock materials. Ecotoxicology and Environmental Safety 148, 285–292. https://doi.org/10.1016/j.ecoenv.2017.10.039
  163. Zornoza, R., Moreno-Barriga, F., Acosta, J.A., Muñoz, M.A., Faz, A., 2016. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 144, 122–130. https://doi.org/10.1016/j.chemosphere.2015.08.046
DOI: https://doi.org/10.2478/boku-2025-0002 | Journal eISSN: 2719-5430 | Journal ISSN: 0006-5471
Language: English
Page range: 11 - 35
Submitted on: Dec 27, 2024
Accepted on: Aug 12, 2025
Published on: Nov 7, 2025
Published by: Universität für Bodenkultur Wien
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Ifeanyi Charles Okoli, Friday Anegbode Edo, Albert Uzochukwu Chinenye Ohanaka, Chidiogo Grace Okoli, published by Universität für Bodenkultur Wien
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.