Have a personal or library account? Click to login
Effect of infant meal home preparation temperature on surviving of Bacillus cereus sensu lato: A case of Bechar city, Algeria Cover

Effect of infant meal home preparation temperature on surviving of Bacillus cereus sensu lato: A case of Bechar city, Algeria

Open Access
|Dec 2021

References

  1. 1. Bigelow, W. D. (1921). The logarithmic nature of thermal death time curves. J. Infect. Dis. 29, 528-536. https://www.jstor.org/stable/3008291010.1093/infdis/29.5.528
  2. 2. Buss da Silva, N., Baranyi, J., Carciofi, B. A. M. & Ellouze, M. (2017). From culture-medium-based models to applications to food: predicting the growth of B. cereus in reconstituted infant formulae. Front. Microbiol. 8, 1799. doi: 10.3389/fmicb.2017.0179910.3389/fmicb.2017.01799561330728983287
  3. 3. Byaruhanga, Y. B., Bester B. H. & Watson T.G. (1999). Growth and survival of Bacillus cereus in mageu, a sour maize beverage. World J. Microbiol. Biotechnol. 15, 329-333. https://doi.org/10.1023/A:100896711738110.1023/A:1008967117381
  4. 4. Carlin, F, Albagnac, C, Rida, A, Guinebretière, M. H, Couvert O. & Nguyen-The C. (2013). Variation of cardinal growth parameters and growth limits according to phylogenetic affiliation in the Bacillus cereus Group. Consequences for risk assessment. Food Microbiol. 33, 69-76. DOI: 10.1016/j.fm.2012.08.01410.1016/j.fm.2012.08.01423122503
  5. 5. Clark, D. & Shrimpton R. (2000). Complementary feeding, the Code, and the Codex. Food Nutr. Bull. 21, 25-29.10.1177/156482650002100104
  6. 6. Daczkowska-Kozon, E. G., Bednarczyk, A., Biba M. & Repich K. (2009). Bacteria of Bacillus cereus group in cereals at retail. Polish J. Food Nutr. Sci. 59, 53-59.
  7. 7. Guinebretière, M. H., Thompson, F. L., Sorokin, A., Normand, P., Dawyndt, P., Ehling-Schulz, Svensson, B., Sanchis, V., Nguyen-The, C., Heyndrickx, M. & De Vos, P. 2008. « Ecological diversification in the Bacillus cereus group ». Environ. Microbiol. 10, 851-865. https://doi.org/10.1111/j.1462-2920.2007.01495.x10.1111/j.1462-2920.2007.01495.x18036180
  8. 8. Grawitz M. (2001). Méthodes des sciences sociales (Social science methods). 11ème édition. 2001. Paris: Dalloz.
  9. 9. Heini, N. M., Stephan, R., Stephan R. & Ohler S. (2018). Characterization of Bacillus cereus group isolates from powdered food products. Int. J. Food Microbiol. 283, 59-64. https://doi.org/10.1016/j.ijfoodmicro.2018.06.01910.1016/j.ijfoodmicro.2018.06.01930099996
  10. 10. Jackson, K. M. & Nazar AM. (2006). Breastfeeding, the Immune Response, and Long-term Health. J. Am. Osteopath. Assoc. 106, 203-207. https://pubmed.ncbi.nlm.nih.gov/16627775/
  11. 11. Janštová, B. & Lukášová J. (2001). Heat resistance of Bacillus spp. spores isolated from cow’s milk and farm environment. Acta Vet Brno 70, 179-184. DOI: 10.2754/avb20017002017910.2754/avb200170020179
  12. 12. Mazas, M., López, M., Martínez, S., Bernardo A. & Martin R. (1999). Heat resistance of Bacillus cereus spores: effects of milk constituents and stabilizing additives. J. Food Prot. 62, 410-413. DOI: 10.4315/0362-028x-62.4.41010.4315/0362-028X-62.4.410
  13. 13. Membré, J. M. & Valdramidis V. (2016). Modeling in Food Microbiology. From Predictive Microbiology to Exposure Assessment. ISTE Press Ltd and Elsevier Ltd, UK. https://doi.org/10.1016/B978-1-78548-155-0.50005-810.1016/B978-1-78548-155-0.50005-8
  14. 14. Messelhäusser, U., Frenzel, E., Blöchinger, C., Zucker, R., Kämpf, P. & Ehling-Schulz, M. (2014). Emetic Bacillus cereus are more volatile than thought: recent foodborne outbreaks and prevalence studies in Bavaria (2007-2013). Biomed Res. Int. 2014:46560310.1155/2014/465603403335724895578
  15. 15. Montville TJ, Dengrove R, De Siano T, Bonnet M, & Schaffner DW. (2005). Thermal resistance of spores from virulent strains of Bacillus anthracis and potential surrogates. J. Food Prot. 68, 2362-2366. DOI: 10.4315/0362-028x-68.11.236210.4315/0362-028X-68.11.2362
  16. 16. Nauta, M. J. (2001). A modular process risk model structure for quantitative microbiological risk assessment and its application in an exposure assessment of Bacillus cereus in a REPFED. RIVM Report 249106007. Bilthoven, The Netherlands. http://hdl.handle.net/10029/9385
  17. 17. NutriFaso, (2007). Cahier des charges d’une farine infantile souhaitant être labellisée NUTRIFASO (Specifications for infant flour wishing to be labeled). Projet NutriFaso, Gret, IRD, ANSA-B.
  18. 18. Sadek, Z.I., Abdel-Rahman, M.A., Azab, M.S., Darwesh, O.M., Hassan, M.S. (2018). Microbiological evaluation of infant foods quality and molecular detection of Bacillus cereus toxins relating genes. Toxicol. Rep. 5, 871-877. https://doi.org/10.1016/j.toxrep.2018.08.013.10.1016/j.toxrep.2018.08.013611104630167378
  19. 19. Sanogo, M., Branderhorst, E., Laurent F. & Trèche S. (1994). La production artisanale des farines infantiles, Expériences et procédés (The artisanal production of infant flours ériences Experiences and processes). Gret, Paris, France; 11.
  20. 20. Sarrias, J. A., Valero M. & Salmeron MC. (2002). Enumeration, isolation and characterization of Bacillus cereus strains from Spanish raw rice. Food Microbiol. 19, 589-595. https://doi.org/10.1006/fmic.2002.051410.1006/fmic.2002.0514
  21. 21. Savić, D., Ristanović, E., Miljković, S. B., Radaković, S., Jošić, D. & Lepšanović, Z., (2020). Enterotoxin and emetic toxin genes profiles and genetic diversity of Bacillus cereus isolated from food, environmental and clinical samples in Serbia. Acta Veterinaria, 70, 182-193. DOI: https://doi.org/10.2478/acve-2020-001310.2478/acve-2020-0013
  22. 22. Stoeckel, M., Westermann, A. C., Atamer Z. & Hinrichs J. (2013). Thermal inactivation of Bacillus cereus spores in infant formula under shear conditions. Dairy Sci. Technol. 93, 163-175. https://hal.archives-ouvertes.fr/hal-0120140310.1007/s13594-012-0101-6
  23. 23. Valerio, F., De Bellis, P., Di Biase, M., Lonigro, S.L., Giussani, B., Visconti, A., Lavermicocca P. & Sisto A. (2012). Diversity of spore-forming bacteria and identification of Bacillus amyloliquefaciens as a species frequently associated with the ropy spoilage of bread. Int. J. Food Microbiol. 156, 278-285. https://doi.org/10.1016/j.ijfoodmicro.2012.04.00510.1016/j.ijfoodmicro.2012.04.00522551674
  24. 24. Zhang, Y., Chen, J., Feng, C., Zhan, L., Zhang, J., Li, Y., Yang, Y., Chen, H., Zhang, Z., Zhang, Y., Mei L. & Li H. (2017). Quantitative prevalence, phenotypic and genotypic characteristics of Bacillus cereus isolated from retail infant foods in China. Foodborne Pathog. Dis. 14, 564-572. DOI: 10.1089/fpd.2017.228710.1089/fpd.2017.228728753035
  25. 25. Ziane, M., Couvert, O., Le Chevalier, P., Moussa-Boudjemaa B. & Leguerinel I. (2016). Identification and characterization of aerobic spore forming bacteria isolated from commercial camel’s milk in south of Algeria. Small Ruminant Res. 137, 59-64. https://doi.org/10.1016/j.smallrumres.2016.03.00410.1016/j.smallrumres.2016.03.004
  26. 26. Ziane, M., Desriac, N., Le Chevalier, P., Moussa-Boudjemaa B. & Leguerinel I. (2014). Identification, heat resistance and growth potential of mesophilic spore-forming bacteria isolated from Algerian retail packaged couscous. Food Control 45, 16-21. https://doi.org/10.1016/j.foodcont.2014.04.00310.1016/j.foodcont.2014.04.003
  27. 27. Ziane, M., Leguerinel I. & Membré J.M. (2019). A quantitative microbiological exposure assessment of Bacillus cereus group IV in couscous semolina, Algeria. Microb. Risk Anal. 11, 11-22. https://doi.org/10.1016/j.mran.2018.07.00110.1016/j.mran.2018.07.001
DOI: https://doi.org/10.2478/aucft-2021-0018 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 201 - 210
Submitted on: Sep 28, 2021
Accepted on: Nov 30, 2021
Published on: Dec 30, 2021
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Hassiba Difallah, Mohammed Ziane, Olfa Ben Braïek, Mohammed Bouamra, Habiba Louzim, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.