Have a personal or library account? Click to login
Effect on Phytochemical Content and Microbial Contamination of Actinidia Fruit after Shock Cooling and Storage Cover

Effect on Phytochemical Content and Microbial Contamination of Actinidia Fruit after Shock Cooling and Storage

Open Access
|Jun 2021

References

  1. 1. Abdel-Aal, E. S. M., Akhtar, H., Zaheer, K. & Ali, R. (2013). Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients, 5(4), 1169-1185. DOI: 10.3390/nu5041169.10.3390/nu5041169370534123571649
  2. 2. Alshannaq, A. & Уu, J.-H. (2017). Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health. 14, 632. https://doi.org/10.3390/ijerph14060632.10.3390/ijerph14060632548631828608841
  3. 3. Anonymous. (2008). Microbiology of food and animal feeding stuffs – Horizontal method for the enumeration of yeasts and moulds. Part 1: Colony count technique in products with water activity greater than 0.95. ISO 21527-1:2008. 1st edn (International Organization for Standardization, Geneva, Switzerland, 2008).
  4. 4. Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y. & González-Aguilar, G. A. (2004). Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT-Food Science and Technology, 37(7), 687-695. DOI: 10.1016/j.lwt.2004.03.00210.1016/j.lwt.2004.03.002
  5. 5. Baranowska-Wójcik, E. & Szwajgier, D. (2019). Characteristics and pro-health properties of mini kiwi (Actinidia arguta). Hortic. Environ. Biotechnol. 60(2), 217–225. DOI: 10.1007/s13580-018-0107-y.10.1007/s13580-018-0107-y
  6. 6. Barboni, T., Cannac, M. & Chiaramonti, N. (2010). Effect of cold storage and ozone treatment on physicochemical parameters, soluble sugars and organic acids in Actinidia deliciosa. Food chemistry, 121(4), 946-951. DOI: 10.1016/j.foodchem.2010.01.024.10.1016/j.foodchem.2010.01.024
  7. 7. Bensch, K., Groenewald, J. Z., Braun, U., Dijksterhuis, J., de Jesús Yáñez-Morales, M. & Crous, P. W. (2015). Common but different: The expanding realm of Cladosporium open access. Stud. Mycol. 82, 23–74 (2015). DOI: 10.1016/j.simyco.2015.10.001.10.1016/j.simyco.2015.10.001477427126955200
  8. 8. Benzie, I.F. & Devaki, M. (2018). The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. Measurement of antioxidant activity & capacity: recent trends and applications Wiley, New York, 77-106. DOI:10.1002/9781119135388.10.1002/9781119135388
  9. 9. Błajet-Kosicka, A., Twarużek, M., Kosicki, R., Sibiorowska, E. & Grajewski, J. (2014). Co-occurrence and evaluation of mycotoxins in organic and conventional rye grain and products. Food Control, 38, 61-66. DOI: 10.1016/j.foodcont.2013.10.003.10.1016/j.foodcont.2013.10.003
  10. 10. Chesoniene, L., Daubaras, R. & Viskelis, P. (2003). Biochemical composition of berries of some kolomikta kiwi (Actinidia kolomikta) cultivars and detection of harvest maturity. In XI Eucarpia Symposium on Fruit Breeding and Genetics 663 (pp. 305-308). DOI: 10.17660/ActaHortic.2004.663.50.10.17660/ActaHortic.2004.663.50
  11. 11. Chi, Z., Wang, F., Chi, Z., Yue, L., Liu, G. & Zhang, T. (2009). Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl. Microbiol. Biotechnol. 82, 793–804 (2009). DOI 10.1007/s00253-009-1882-2.
  12. 12. Drummond, L. (2013). The composition and nutritional value of kiwi fruit. Adv. Food Nutr. Res. 68, 33–57. DOI: 10.1016/B978-0-12-394294-4.00003-1.10.1016/B978-0-12-394294-4.00003-123394981
  13. 13. European Commission (2006). Commission Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs.
  14. 14. Fiorentino, A., D’Abrosca, B., Pacifico, S., Mastellone, C., Scognamiglio, M. & Monaco, P. (2009). Identification and assessment of antioxidant capacity of phytochemicals from kiwi fruits. Journal of agricultural and food chemistry, 57(10), 4148-4155. DOI: 10.1021/jf900210z.10.1021/jf900210z19358604
  15. 15. Gomez, A. H., Wang, J., Hu, G. & Pereira, A. G. (2008). Monitoring storage shelf life of tomato using electronic nose technique. Journal of Food Engineering, 85(4), 625-631. DOI: 10.1016/j.jfoodeng.2007.06.039.10.1016/j.jfoodeng.2007.06.039
  16. 16. Guan, D., Zhang, Z., Yang, Y., Xing, G. & Liu, J. (2011). Immunomodulatory activity of polysaccharide from the roots of Actinidia kolomikta on macrophages. Int. J. Biol. 3(2), 3. DOI:10.5539/ijb.v3n2p3.10.5539/ijb.v3n2p3
  17. 17. Jiang, H., Sun, Z., Jia, R., Wang, X. & Huang, J. (2016). Effect of chitosan as an antifungal and preservative agent on postharvest blueberry. J. Food Qual. 39(5), 516-523. DOI: 10.1111/jfq.12211.10.1111/jfq.12211
  18. 18. Jing, P., Bomser, J. A., Schwartz, S. J., He, J., Magnuson, B. A. & Giusti, M. M. (2008). Structure− function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth. Journal of agricultural and food chemistry, 56(20), 9391-9398.10.1021/jf800591718800807
  19. 19. Kamiloglu, S., Capanoglu, E., Grootaert, C. & Van Camp, J. (2015). Anthocyanin absorption and metabolism by human intestinal Caco-2 cells—A review. Int J Mol Sci 16(9), 21555-21574. DOI: 10.3390/ijms160921555.10.3390/ijms160921555461326726370977
  20. 20. Kim, A. N., Kim, H. J., Chun, J., Heo, H. J., Kerr, W. L. & Choi, S. G. (2018). Degradation kinetics of phenolic content and antioxidant activity of hardy kiwifruit (Actinidia arguta) puree at different storage temperatures. LWT, 89, 535-541. DOI: 10.1016/j.lwt.2017.11.036.10.1016/j.lwt.2017.11.036
  21. 21. Kozos, K., Ochmian, I. & Chełpiński, P. (2014). The effects of rapid chilling and storage conditions on the quality of Brigitta Blue cultivar highbush blueberries (Vaccinium corymbosum L.). Folia Horticulturae, 26(2), 147-153. DOI: 10.1515/fhort-2015-000.
  22. 22. Figiel-Kroczyńska, M., Ochmian, I., Lachowicz, S., Krupa-Małkiewicz, M., Wróbel, J., & Gamrat, R. (2021). Actinidia (mini kiwi) fruit quality in relation to summer cutting. Agronomy, 11(5), 964. DOI:10.3390/agronomy1105096410.3390/agronomy11050964
  23. 23. Krupa, T., Latocha, P. & Liwińska, A. (2011). Changes of physicochemical quality, phenolics and vitamin C content in hardy kiwifruit (Actinidia arguta and its hybrid) during storage. Scientia Horticulturae, 130(2), 410-417. DOI: 10.1016/j.scienta.2011.06.044.10.1016/j.scienta.2011.06.044
  24. 24. Krzysztofik, B. & Łapczyńska-Kordon, B. (2008). Wpływ sposobów i czasu przechowywania na wybrane cechy sensoryczne jabłek. Inżynieria Rolnicza, 12, 121-128.
  25. 25. Kućmierz, J., Nawrocki, J. & Sojka, A. (2013). Fungi isolated from diseased early green fruits and fruits of blueberry (Vaccinium corymbosum L.). Prog. Plant Prot. 53, 779–784.
  26. 26. Latocha, P. (2017). The Nutritional and Health Benefits of Kiwiberry (Actinidia arguta) – a Review. Plant Foods Hum. Nutr. 72, 325–334. DOI: 10.1007/s11130-017-0637-y.10.1007/s11130-017-0637-y571712128988409
  27. 27. Latocha, P., Krupa, T., Jankowski, P. & Radzanowska, J. (2014). Changes in postharvest physicochemical and sensory characteristics of hardy kiwifruit (Actinidia arguta and its hybrid) after cold storage under normal versus controlled atmosphere. Postharvest biology and technology, 88, 21-33. DOI: 10.1016/j.postharvbio.2013.09.005.10.1016/j.postharvbio.2013.09.005
  28. 28. Leontowicz, H., Leontowicz, M., Latocha, P., Jesion, I., Park, Y. S., Katrich, E., Barasch, D., Nemirovski. A. & Gorinstein, S. (2016). Bioactivity and nutritional properties of hardy kiwi fruit Actinidia arguta in comparison with Actinidia deliciosa ‘Hayward’ and Actinidia eriantha ‘Bidan’. Food Chem. 196, 281–291. DOI: 10.1016/j.foodchem.2015.08.127.10.1016/j.foodchem.2015.08.12726593493
  29. 29. Lim, S., Han, S. H., Kim, J., Lee, H. J., Lee, J. G. & Lee, E. J. (2016). Inhibition of hardy kiwifruit (Actinidia aruguta) ripening by 1-methylcyclopropene during cold storage and anticancer properties of the fruit extract. Food chemistry, 190, 150-157. DOI: 10.1016/j.foodchem.2015.05.085.10.1016/j.foodchem.2015.05.08526212954
  30. 30. Lu, J., Jin, Y., Liu, G., Zhu, N., Gui, M., Yu, A. & Li, X. (2010). Flavonoids from the leaves of Actinidia kolomikta. Chem. Nat. Compd, 46(2), 205-208.10.1007/s10600-010-9569-6
  31. 31. Muriel, P. (2009). Role of free radicals in liver diseases. Hepatology international, 3(4), 526-536. DOI 10.1007/s12072-009-9158-6.10.1007/s12072-009-9158-6279059319941170
  32. 32. Naidu, K. A. (2003). Vitamin C in human health and disease is still a mystery? An overview. Nutrition journal, 2(1), 1-10.10.1186/1475-2891-2-720100814498993
  33. 33. Nishiyama, I., Fukuda, T. & Oota, T. (2004b). Varietal differences in actinidin concentration and protease activity in the fruit juice of Actinidia arguta and Actinidia rufa. J. Jpn. Soc. Hortic. Sci. 73, 157–162. DOI: 10.2503/jjshs.73.157.10.2503/jjshs.73.157
  34. 34. Nishiyama, I., Fukuda, T. & Oota, T. (2005). Genotypic differences in chlorophyll, lutein, and β-carotene contents in the fruits of actinidia species. J. Agric. Food. Chem. 53, 6403–6407. DOI: 10.1021/jf050785y.10.1021/jf050785y16076125
  35. 35. Nishiyama, I., Fukuda, T., Shimohashi, A. & Oota, T. (2008). Sugar and organic acid composition in the fruit juice of different Actinidia varieties. Food. Sci. Technol. Res. 14(1), 67–73. DOI: 10.3136/fstr.14.67.10.3136/fstr.14.67
  36. 36. Nishiyama, I., Yamashita, Y., Yamanaka, M., Shimohashi, A., Fukuda, T. & Oota, T. (2004a). Varietal difference in vitamin C content in the fruit of kiwi fruit and other Actinidia species. J. Agric. Food Chem. 52(17), 5472–5475. DOI: 10.1021/jf049398z.10.1021/jf049398z15315387
  37. 37. Ochmian, I., Figiel-Kroczyńska, M. & Lachowicz, S. (2020). The Quality of Freeze-Dried and Rehydrated Blueberries Depending on their Size and Preparation for Freeze-Drying. Acta Univ. Cibiniensis, Ser. E: FoodTechnol.24(1), 61-78. DOI: 10.2478/aucft-2020-0006.10.2478/aucft-2020-0006
  38. 38. Ochmian, I. & Kozos, K. (2015). Influence of foliar fertilization with calcium fertilizers on the firmness and chemical composition of two high bush blueberry cultivars. J. Elem. 20(1), 185–201. DOI: 10.5601/jelem.2014.19.4.782.10.5601/jelem.2014.19.4.782
  39. 39. Ochmian, I., Grajkowski, J. & Smolik, M., 2012. Comparison of some morphological features, quality and chemical content of four cultivars of chokeberry fruits (Aronia melanocarpa). Not. Bot. Horti. Agrobot. Cluj Napoca, 40(1), 253–260.10.15835/nbha4017181
  40. 40. Oszmiański, J., Lachowicz, S., Gławdel, E., Cebulak, T. & Ochmian, I. (2018). Determination of photochemical composition and antioxidant capacity of 22 old apple cultivars grown in Poland. Eur. Food Res. Technol. 244(4), 647–662. DOI: 10.1007/s00217-017-2989-9.10.1007/s00217-017-2989-9
  41. 41. Prakash, B., Kedia, A., Mishra, P. K. & Dubey, N. K. (2015). Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities– Potentials and challenges. Food Control, 47, 381-391. DOI: 10.1016/j.foodcont.2014.07.02310.1016/j.foodcont.2014.07.023
  42. 42. Ribera, A. E., Reyes-Diaz, M., Alberdi, M., Zuñiga, G. E. & Mora, M. L. (2010). Antioxidant compounds in skin and pulp of fruits change among genotypes and maturity stages in highbush blueberry (Vaccinium corymbosum L.) grown in southern Chile. J. Soil Sci. Plant Nutr. 10(4), 509-536. DOI: 10.4067/S0718-95162010000200010.10.4067/S0718-95162010000200010
  43. 43. Salvador, A., Arnal, L., Monterde, A. & Cuquerella, J. (2004). Reduction of chilling injury symptoms in persimmon fruit cv.‘Rojo Brillante’by 1-MCP. Postharvest Biology and Technology, 33(3), 285-291. DOI: 10.1016/j.postharvbio.2004.03.005.10.1016/j.postharvbio.2004.03.005
  44. 44. Sanzani, S. M., Reverberi, M. & Geisen, R. (2016). Mycotoxins in harvested fruits and vegetables: Insights in producing fungi, biological role, conducive conditions, and tools to manage postharvest contamination. Postharvest Biology and Technology, 122, 95-105. DOI: 10.1016/j.postharvbio.2016.07.003.10.1016/j.postharvbio.2016.07.003
  45. 45. Szpadzik, E., Zaraś-Januszkiewicz, E. & Krupa, T. (2021). Storage Quality Characteristic of Two Minikiwi Fruit (Actinidia arguta (Siebold & Zucc.) Planch. ex Miq.) Cultivars:‘Ananasnaya’and ‘Bingo’—A New One Selected in Poland. Agronomy, 11(1), 134. DOI: 10.3390/agronomy11010134.10.3390/agronomy11010134
  46. 46. Tavarini, S., Degl’Innocenti, E., Remorini, D., Massai, R. & Guidi, L. (2008). Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chem. 107(1), 282-288. DOI: 10.1016/j.foodchem.2007.08.015.10.1016/j.foodchem.2007.08.015
  47. 47. Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L. & Byrne, D. H. (2006). Comparison of ABTS, DPPH•, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compost. Anal. 19(6–7), 669–675. DOI: 10.1016/j.jfca.2006.01.003.10.1016/j.jfca.2006.01.003
  48. 48. Tournas, V. & Katsoudas, E. (2005). Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. Food Microbiol. 105, 11–17.10.1016/j.ijfoodmicro.2005.05.002
  49. 49. Ulbin-Figlewicz, N., Jarmoluk, A. & Marycz, K. (2015). Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Ann. Microbiol. 65, 1537–1546. DOI: 10.1007/s13213-014-0992-y.10.1007/s13213-014-0992-y
  50. 50. Valero, D., Martıńez-Romero, D. & Serrano, M. (2002). The role of polyamines in the improvement of the shelf life of fruit. Trends in Food Science & Technology, 13(6-7), 228-234. https://doi.org/10.1016/S0924-2244(02)00134-6.10.1016/S0924-2244(02)00134-6
  51. 51. Valko, M., Rhodes, C., Moncol, J., Izakovic, M. M. & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160(1), 1–40. DOI: 10.1016/j.cbi.2005.12.009.10.1016/j.cbi.2005.12.00916430879
  52. 52. Wang, Z. (2013). Extraction process of polyphenols form wild Actinidia arguta in Dandong. J. Eas. Liaoning Univ.(Nat. Sci.), 1, 8-11.
  53. 53. White, A., de Silva, H. N., Requejo-Tapia, C. & Harker, F. R. (2005). Evaluation of softening characteristics of fruit from 14 species of Actinidia. Postharvest Biology and Technology, 35(2), 143-151. DOI: 10.1016/j.postharvbio.2004.08.004.10.1016/j.postharvbio.2004.08.004
  54. 54. Wojdyło, A., Nowicka, P., Oszmiański, J. & Golis, T. (2017). Phytochemical compounds and biological effects of Actinidia fruits. J. Funct. Foods. 30, 194–202. DOI: 10.1016/j.jff.2017.01.018.10.1016/j.jff.2017.01.018
  55. 55. Zhang, H., Zhao, Q., Lan, T., Geng, T., Gao, C., Yuan, Q., Zhang, Q., Xu., P, Sun, X., Liu, X. & Ma, T. (2020). Comparative Analysis of Physicochemical Characteristics, Nutritional and Functional Components and Antioxidant Capacity of Fifteen Kiwifruit (Actinidia) Cultivars—Comparative Analysis of Fifteen Kiwifruit (Actinidia) Cultivars. Foods, 9(9), 1267. DOI: 10.3390/foods9091267.10.3390/foods9091267755571032927636
  56. 56. Zhu, R., Feussner, K., Wu, T., Yan, F., Karlovsky, P. & Zheng, X. (2015). Detoxification of mycotoxin patulin by the yeast Rhodosporidium paludigenum. Food Chem. 179, 1-5. DOI: 10.1016/j.foodchem.2015.01.066.10.1016/j.foodchem.2015.01.06625722132
  57. 57. Zuo, L.L., Wang, Z.Y., Fan, Z.L., Tian, S.Q. & Liu, J.R. (2012). Evaluation of antioxidant and antiproliferative properties of three Actinidia (Actinidia kolomikta, Actinidia arguta, Actinidia chinensis) extracts in vitro. Int. J. Mol. Sci. 13(5), 5506–5518. DOI: 10.3390/ijms13055506.10.3390/ijms13055506338277522754311
DOI: https://doi.org/10.2478/aucft-2021-0015 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 155 - 166
Submitted on: Apr 28, 2021
Accepted on: Jun 11, 2021
Published on: Jun 28, 2021
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Monika Figiel-Kroczyńska, Ireneusz Ochmian, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.