Have a personal or library account? Click to login
Preparation of Vitamin K2 Mk-7 in a Process of Fermentation of Different Seeds and Cereals by Bacteria Bacillus Subtilis Cover

Preparation of Vitamin K2 Mk-7 in a Process of Fermentation of Different Seeds and Cereals by Bacteria Bacillus Subtilis

Open Access
|Jun 2021

References

  1. 1. Adams, J., & Pepping, J. (2005). Vitamin K in the treatment and prevention of osteoporosis and arterial calcification. In American Journal of Health-System, Pharmacy, 62(15), 1574–81. https://doi.org/10.2146/ajhp04035710.2146/ajhp040357
  2. 2. Adebo, O. A. (2017). Functional Food-Improve Health through Adequate Food. M. C. Hueda (ed.), Intech Open. (pp. 77–109).
  3. 3. Berenjian, A., Mahanama, R., Talbot, A., Biffin, R., Regtop, H., Valtchev, P., Kavanagh, J., & Dehghani, F. (2011). Efficient media for high menaquinone-7 production: Response surface methodology approach. New Biotechnology, 28(6),665–672. https://doi.org/10.1016/j.nbt.2011.07.00710.1016/j.nbt.2011.07.007
  4. 4. Beulens, J. W. J., Booth, S. L., Van Den Heuvel, E. G. H. M., Stoecklin, E., Baka, A., & Vermeer, C. (2013). The role of menaquinones (vitamin K2) in human health. In British Journal of Nutrition, 110(8),1357–68. https://doi.org/10.1017/S000711451300101310.1017/S0007114513001013
  5. 5. Bhanja Dey, T., Chakraborty, S., Jain, K. K., Sharma, A., & Kuhad, R. C. (2016). Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. In Trends in Food Science and Technology, 53(C), 60–74. https://doi.org/10.1016/j.tifs.2016.04.00710.1016/j.tifs.2016.04.007
  6. 6. Booth, S. L. (2012). Vitamin K: Food composition and dietary intakes. Food and Nutrition Research, 56(5505), 1–5. https://doi.org/10.3402/fnr.v56i0.550510.3402/fnr.v56i0.5505
  7. 7. Chen, Y., Wang, Y., Chen, J., Tang, H., Wang, C., Li, Z., & Xiao, Y. (2020). Bioprocessing of soybeans (Glycine maxL.) by solid-state fermentation withEurotium cristatumYL-1 improves total phenolic content, isoflavone aglycones, and antioxidant activity. RSC Advances, 10, 16928–16941. https://doi.org/10.1039/c9ra10344a10.1039/C9RA10344A
  8. 8. Chu, P. H., Huang, T. Y., Williams, J., & Stafford, D. W. (2006). Purified vitamin K epoxide reductase alone is sufficient for conversion of vitamin K epoxide to vitamin K and vitamin K to vitamin KH2. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 19308–13. https://doi.org/10.1073/pnas.060940110310.1073/pnas.0609401103
  9. 9. Dahlberg, S., Ede, J., & Schött, U. (2017). Vitamin K and cancer. In Scandinavian Journal of Clinical and Laboratory Investigation, 77 (8), 555–567. https://doi.org/10.1080/00365513.2017.137909010.1080/00365513.2017.1379090
  10. 10. de Boer Sietske, A., & Diderichsen, B. (1991). On the safety of Bacillus subtilis and B. amyloliquefaciens: a review. In Applied Microbiology and Biotechnology, 36, 1–4. https://doi.org/10.1007/BF0016468910.1007/BF00164689
  11. 11. Divi, R. L., Chang, H. C., & Doerge, D. R. (1997). Anti-thyroid isoflavones from soybean. Isolation, characterization, and mechanisms of action. Biochemical Pharmacology, 54(10),1087–96. https://doi.org/10.1016/S0006-2952(97)00301-810.1016/S0006-2952(97)00301-8
  12. 12. Dordević, T. M., Šiler-Marinković, S. S., & Dimitrijević-Branković, S. I. (2010). Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chemistry, 119, 957–63. https://doi.org/10.1016/j.foodchem.2009.07.04910.1016/j.foodchem.2009.07.049
  13. 13. Douglas, C., Johnson, S., & Arjmandi, B. (2013). Soy and Its Isoflavones: The Truth Behind the Science in Breast Cancer. Anti-Cancer Agents in Medicinal Chemistry, 13(8),1178–87. https://doi.org/10.2174/1871520611313999032010.2174/1871520611313999032023919747
  14. 14. Erkkilä, A. T., & Booth, S. L. (2008). Vitamin K intake and atherosclerosis. In Current Opinion in Lipidology, 19(1), 39–42. https://doi.org/10.1097/MOL.0b013e3282f1c57f10.1097/MOL.0b013e3282f1c57f18196985
  15. 15. Ferland, G. (2013). Vitamin K and brain function. Seminars in Thrombosis and Hemostasis, 39(8), 849–855. https://doi.org/10.1055/s-0033-135748110.1055/s-0033-135748124108469
  16. 16. Gamboa-Gómez, C. I., Muñoz-Martínez, A., Rocha-Guzmán, N. E., Gallegos-Infante, J. A., Moreno-Jiménez, M. R., González-Herrera, S. M., Soto-Cruz, O., & González-Laredo, R. F. (2016). Changes in Phytochemical and Antioxidant Potential of Tempeh Common Bean Flour from Two Selected Cultivars Influenced by Temperature and Fermentation Time. Journal of Food Processing and Preservation, 40,270–8. https://doi.org/10.1111/jfpp.1260410.1111/jfpp.12604
  17. 17. Gan, R. Y., Li, H. Bin, Gunaratne, A., Sui, Z. Q., & Corke, H. (2017). Effects of Fermented Edible Seeds and Their Products on Human Health: Bioactive Components and Bioactivities. In Comprehensive Reviews in Food Science and Food Safety, 16(3), 489–531. https://doi.org/10.1111/1541-4337.1225710.1111/1541-4337.1225733371560
  18. 18. Jargin, S. V. (2014). Soy and phytoestrogens: Possible side effects. German Medical Science : GMS e-Journal, 12, Doc18. https://doi.org/10.3205/000203
  19. 19. Jensen, G. S., Lenninger, M., Ero, M. P., & Benson, K. F. (2016). Consumption of nattokinase is associated with reduced blood pressure and von willebrand factor, a cardiovascular risk marker: Results from a randomized, double-blind, placebo-controlled, multicenter north american clinical trial. Integrated Blood Pressure Control, 9, 95–104. https://doi.org/10.2147/IBPC.S9955310.2147/IBPC.S99553506686427785095
  20. 20. Karmańska, A., & Karwowski, B. (2015). Rola witaminy K w metabolizmie kości. Bromatologia i Chemia Toksykologiczna, XLVIII(1), 106–115.
  21. 21. Kim, B., Hong, V. M., Yang, J., Hyun, H., Im, J. J., Hwang, J., Yoon, S., & Kim, J. E. (2016). A review of fermented foods with beneficial effects on brain and cognitive function. In Preventive Nutrition and Food Science, 21 (4), 297–309. https://doi.org/10.3746/pnf.2016.21.4.29710.3746/pnf.2016.21.4.297521688028078251
  22. 22. Kim, S. H., & Park, M. J. (2012). Effects of phytoestrogen on sexual development. In Korean Journal of Pediatrics, 55(8), 265–271. https://doi.org/10.3345/kjp.2012.55.8.26510.3345/kjp.2012.55.8.265343356222977438
  23. 23. Konieczka P. (2003). Walidacja metodyk analitycznych. Ecological Chemistry and Engineering, 10(10), 1071–1100.
  24. 24. Kucharz, E. J., Stajszczak, M., Kotulska, A., Brzosko, M., Leszczyński, P., Pawlak-Buś, K., Samborski, W., & Wiland, P. (2018). Rola witaminy K2 w metabolizmie kości i innych procesach patofizjologicznych - znaczenie profilaktyczne i terapeutyczne. Varia Medica, 2(4), 345–358.
  25. 25. Lai, L. R., Hsieh, S. C., Huang, H. Y., & Chou, C. C. (2013). Effect of lactic fermentation on the total phenolic, saponin and phytic acid contents as well as anti-colon cancer cell proliferation activity of soymilk. Journal of Bioscience and Bioengineering, 115, 552–6. https://doi.org/10.1016/j.jbiosc.2012.11.02210.1016/j.jbiosc.2012.11.02223290992
  26. 26. Lamson, D. W., & Plaza, S. M. (2003). The anticancer effects of vitamin K. In Alternative Medicine Review, 8(3), 303–18.
  27. 27. Liu, J., Xing, J., Chang, T., Ma, Z., & Liu, H. (2005). Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods. Process Biochemistry, 40(8), 2757–2762. https://doi.org/10.1016/j.procbio.2004.12.02510.1016/j.procbio.2004.12.025
  28. 28. Luo, M. miao, Ren, L. jing, Chen, S. lan, Ji, X. jun, & Huang, H. (2016). Effect of media components and morphology of Bacillus natto on menaquinone-7 synthesis in submerged fermentation. Biotechnology and Bioprocess Engineering, 21, 777–786. https://doi.org/10.1007/s12257-016-0202-910.1007/s12257-016-0202-9
  29. 29. Mahdinia, E., Demirci, A., & Berenjian, A. (2019). Biofilm reactors as a promising method for vitamin K (menaquinone-7) production. In Applied Microbiology and Biotechnology, 103, 5583–5592. https://doi.org/10.1007/s00253-019-09913-w10.1007/s00253-019-09913-w31152205
  30. 30. Manna, P., & Kalita, J. (2016). Beneficial role of vitamin K supplementation on insulin sensitivity, glucose metabolism, and the reduced risk of type 2 diabetes: A review. In Nutrition, 32(7-8): 732–739. https://doi.org/10.1016/j.nut.2016.01.01110.1016/j.nut.2016.01.01127133809
  31. 31. Maresz, K. (2015). Proper calcium use: Vitamin K2 as a promoter of bone and cardiovascular health. In Integrative Medicine (Boulder), 14(1), 34–39.
  32. 32. Maruo, B., & Yoshkawa, H. (1989). Bacillus subtilis: Molecular biology and industrial application. Topics in secondary metabolism 1. In Elsevier Science, New York, USA, (pp. 143–161).
  33. 33. Nagai, T. (2015). Health benefits of natto. In Health Benefits of Fermented Foods and Beverages, 2, 316–327. https://doi.org/10.1201/b1827910.1201/b18279
  34. 34. Palermo, A., Tuccinardi, D., D’Onofrio, L., Watanabe, M., Maggi, D., Maurizi, A. R., Greto, V., Buzzetti, R., Napoli, N., Pozzilli, P., & Manfrini, S. (2017). Vitamin K and osteoporosis: Myth or reality? In Metabolism: Clinical and Experimental, 70,57–71. https://doi.org/10.1016/j.metabol.2017.01.03210.1016/j.metabol.2017.01.03228403946
  35. 35. Ranmadugala, D., Grainger, M., Manley-Harris, M., & Berenjian, A. (2018). Determination of Menaquinone-7 by a simplified reversed phase - HPLC method. Current Pharmaceutical Biotechnology, 19(8), 664–673.10.2174/138920101966618082809063730152282
  36. 36. Rishipal, S., Alka, P., Mojeer, H., & Bibhu Prasad, P. (2016). Development of a rapid HPLC-UV method for analysis of Menaquinone-7 in soy nutraceutical. Pharmaceutica Analytica Acta, 7(12).
  37. 37. Rosales, E., Pazos, M., & Ángeles Sanromán, M. (2018). Solid-State Fermentation for Food Applications. In Current Developments in Biotechnology and Bioengineering, 319–355. https://doi.org/10.1016/b978-0-444-63990-5.00015-310.1016/B978-0-444-63990-5.00015-3
  38. 38. Schurgers, L. J., & Vermeer, C. (2000). Determination of Phylloquinone and Menaquinones in Food. Pathophysiology of Haemostasis and Thrombosis, 30(6), 298–307. https://doi.org/10.1159/00005414710.1159/00005414711356998
  39. 39. Schwalfenberg, G. K. (2017). Vitamins K1 and K2: The Emerging Group of Vitamins Required for Human Health. In Journal of Nutrition and Metabolism, 2017(18),1–6. https://doi.org/10.1155/2017/625483610.1155/2017/6254836549409228698808
  40. 40. Shearer, M. J., & Newman, P. (2008). Metabolism and cell biology of vitamin K. In Thrombosis and Haemostasis, 100(4),530–547. https://doi.org/10.1160/TH08-03-014710.1160/TH08-03-0147
  41. 41. Shin, H. Y., Kim, S. M., Lee, J. H., & Lim, S. T. (2019). Solid-state fermentation of black rice bran with Aspergillus awamori and Aspergillus oryzae: Effects on phenolic acid composition and antioxidant activity of bran extracts. Food Chemistry, 272, 235–241. https://doi.org/10.1016/j.foodchem.2018.07.17410.1016/j.foodchem.2018.07.17430309538
  42. 42. Steinkraus, K. H. (1996). Handbook of indigenous fermented foods. M. Dekker (ed.), New York, USA.
  43. 43. Suksomboon, N., Poolsup, N., & Darli Ko Ko, H. (2017). Effect of vitamin K supplementation on insulin sensitivity: a meta-analysis. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 10, 169–177. https://doi.org/10.2147/dmso.s13757110.2147/DMSO.S137571542231728496349
  44. 44. Swain, M. R., Anandharaj, M., Ray, R. C., & Parveen Rani, R. (2014). Fermented Fruits and Vegetables of Asia: A Potential Source of Probiotics. Biotechnology Research International, 2014, 250424. https://doi.org/10.1155/2014/25042410.1155/2014/250424405850925343046
  45. 45. Szydłowska, A., & Kołożyn-Krajewska, D. (2010). Zastosowanie bakterii potencjalnie probiotycznych do fermentacji przecieru z dynii. Żywność Nauka Technologia Jakość, 6(73), 109–119.
  46. 46. Tamang, J. P., Shin, D. H., Jung, S. J., & Chae, S. W. (2016). Functional properties of microorganisms in fermented foods. In Frontiers in Microbiology, 7, 578. https://doi.org/10.3389/fmicb.2016.0057810.3389/fmicb.2016.00578484462127199913
  47. 47. Tian, Y., Fan, Y., Liu, J., Zhao, X., & Chen, W. (2016). Effect of nitrogen, carbon sources and agitation speed on acetoin production of Bacillus subtilis SF4-3. Electronic Journal of Biotechnology, 19(1), 41–49. https://doi.org/10.1016/j.ejbt.2015.11.00510.1016/j.ejbt.2015.11.005
  48. 48. Tse, G., & Eslick, G. D. (2016). Soy and isoflavone consumption and risk of gastrointestinal cancer: a systematic review and meta-analysis. European Journal of Nutrition, 55(1), 63–73. https://doi.org/10.1007/s00394-014-0824-710.1007/s00394-014-0824-725547973
  49. 49. Tsubura S. (2012). Antiperiodontitis effect of Bacillus subtilis (natto). Shigaku, 99, 160–164.
  50. 50. Tsukamoto, Y., Ichise, H., Kakuda, H., & Yamaguchi, M. (2000). Intake of fermented soybean (natto) increases circulating vitamin K2 (menaquinone-7) and γ-carboxylated osteocalcin concentration in normal individuals. Journal of Bone and Mineral Metabolism, 18(4):216–22. https://doi.org/10.1007/s00774007002310.1007/s00774007002310874601
  51. 51. Vermeer, C., & Braam, L. (2001). Role of K vitamins in the regulation of tissue calcification. Journal of Bone and Mineral Metabolism, 19 (4), 201–206. https://doi.org/10.1007/s00774017002110.1007/s00774017002111448011
  52. 52. Vermeer, C., Shearer, M. J., Zittermann, A., Bolton-Smith, C., Szulc, P., Hodges, S., Walter, P., Rambeck, W., Stöcklin, E., & Weber, P. (2004). Beyond Deficiency: Potential benefits of increased intakes of vitamin K for bone and vascular health. In European Journal of Nutrition, 43(6), 325–35. https://doi.org/10.1007/s00394-004-0480-410.1007/s00394-004-0480-415309455
  53. 53. Walther, B., Philip Karl, J., Booth, S. L., & Boyaval, P. (2013). Menaquinones, bacteria, and the food supply: The relevance of dairy and fermented food products to vitamin K requirements. In Advances in Nutrition, 4(4):463–73. https://doi.org/10.3945/an.113.00385510.3945/an.113.003855394182523858094
  54. 54. Wang, H., Lee, I. S., Braun, C., & Enck, P. (2016). Effect of probiotics on central nervous system functions in animals and humans: A systematic review. In Journal of Neurogastroenterology and Motility, 22(4), 589–605. https://doi.org/10.5056/jnm1601810.5056/jnm16018505656827413138
  55. 55. WHO, & FAO. (2004). Vitamin and mineral requirements in human nutrition. 2nd ed.; 108–129.
  56. 56. Willems, B. A. G., Vermeer, C., Reutelingsperger, C. P. M., & Schurgers, L. J. (2014). The realm of vitamin K dependent proteins: Shifting from coagulation toward calcification. Molecular Nutrition and Food Research, 58(8), 1620–1635. https://doi.org/10.1002/mnfr.20130074310.1002/mnfr.20130074324668744
  57. 57. Wintergerst, E. S., Maggini, S., & Hornig, D. H. (2007). Contribution of selected vitamins and trace elements to immune function. In Annals of Nutrition and Metabolism, 51(4), 301–23. https://doi.org/10.1159/00010767310.1159/00010767317726308
  58. 58. Wu, W. J., Kim, M. S., & Ahn, B. Y. (2015). The inhibitory effect of Vitamin K on RANKL-induced osteoclast differentiation and bone resorption. Food and Function, 6(10), 3351–3358. https://doi.org/10.1039/c5fo00544b10.1039/C5FO00544B
  59. 59. Xiao, Y., Xing, G., Rui, X., Li, W., Chen, X., Jiang, M., & Dong, M. (2014). Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with Cordyceps militaris SN-18. Journal of Functional Foods, 10, 210–22. https://doi.org/10.1016/j.jff.2014.06.00810.1016/j.jff.2014.06.008
  60. 60. Zhang, N., Li, D., Zhang, X., Shi, Y., & Wang, H. (2015). Solid-state fermentation of whole oats to yield a synbiotic food rich in lactic acid bacteria and prebiotics. Food and Function, 6, 2620–5. https://doi.org/10.1039/c5fo00411j10.1039/C5FO00411J26130143
  61. 61. Zwakenberg, S. R., den Braver, N. R., Engelen, A. I. P., Feskens, E. J. M., Vermeer, C., Boer, J. M. A., Verschuren, W. M. M., van der Schouw, Y. T., & Beulens, J. W. J. (2017). Vitamin K intake and all-cause and cause specific mortality. Clinical Nutrition, 36(5), 1294–1300. https://doi.org/10.1016/j.clnu.2016.08.01710.1016/j.clnu.2016.08.01727640076
DOI: https://doi.org/10.2478/aucft-2021-0009 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 93 - 104
Submitted on: Jan 24, 2021
|
Accepted on: May 20, 2021
|
Published on: Jun 28, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Magdalena Słowik-Borowiec, Leszek Potocki, Bernadetta Oklejewicz, Daniel Broda, Magdalena Podbielska, Ewa Szpyrka, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.