Have a personal or library account? Click to login
Analysis of AI Mobile Applications for Ensuring Digital Accessibility in Higher Education for People with Disabilities Cover

Analysis of AI Mobile Applications for Ensuring Digital Accessibility in Higher Education for People with Disabilities

By: Radka Nacheva  
Open Access
|Feb 2025

References

  1. Ajani, O. A. (2024). Teachers’ competencies in digital integration of learning contents in dynamic classroom practices: A review of teacher professional development needs. Acta Educationis Generalis, 14(3), 18-40. https://doi.org/10.2478/atd-2024-0016
  2. Akhtar, A. (2023). 10 ways artificial intelligence is revolutionizing education in 2024. AtOnce.com. Retrieved from https://atonce.com/blog/artificial-intelligence-and-education
  3. Al-Razgan, M., Almoaiqel, S., Alrajhi, N. N., Alhumegani, A., Alshehri, A., Alnefaie, B., AlKhamiss, R., & Rushdi, S. (2021). A systematic literature review on the usability of mobile applications for visually impaired users. PeerJ Computer Science, 7, e771. https://doi.org/10.7717/peerj-cs.771
  4. Anthology. (2023). Anthology Ally. Anthology.com. Retrieved from https://www.anthology.com/products/teaching-and-learning/learning-effectiveness/anthology-ally
  5. Batanero, J. M. F., Rueda, M. M., & Fernández‐Cerero, J. (2022). Access and participation of students with disabilities: The challenge for higher education. International Journal of Environmental Research and Public Health, 19(19), 11918. https://doi.org/10.3390/ijerph191911918
  6. Belgacem, H., Li, X., Bianculli, D., & Briand, L. C. (2023). A machine learning approach for automated filling of categorical fields in data entry forms. ACM Transactions on Software Engineering and Methodology, 32(2), 1-40. https://doi.org/10.1145/3533021
  7. Bhargav, H., Ahmed, I., Whitfield, M., Shankar, R., Meza, M., & Fels, D. I. (2020). TECLA Sound: Combining single switch and speech access. In Lecture Notes in Computer Science (pp. 348-354). https://doi.org/10.1007/978-3-030-58805-2_41
  8. Cecilia, R., Moussouri, T., & Fraser, J. (2023). AltText: An institutional tool for change. The Museum Journal, 66(2), 225-231. https://doi.org/10.1111/cura.12551
  9. Chen, C. (2021). How to convert MP3 to text. Otter.ai. Retrieved from https://otter.ai/blog/how-to-convert-mp3-to-text
  10. Dodd, E., Ellis, S., & Singh, S. (2020). Making the invisible, visible: A twenty-first century approach to tertiary preparation, attainment and access for student equity. International Journal of Inclusive Education, 27(2), 167-187. https://doi.org/10.1080/13603116.2020.1831629
  11. Dürr, K. (2021). Be My Eyes and Seeing AI: How These Accessibility Apps Benefit the Visually Disabled. Retrieved from https://www.njstatelib.org/be-my-eyes-and-seeing-ai-how-these-accessibility-apps-benefit-the-visually-disabled/
  12. Eleyan, D., Othman, A., & Eleyan, A. (2020). Enhancing software comments readability using Flesch Reading Ease Score. Information, 11(9), 430. https://doi.org/10.3390/info11090430
  13. El-Sabagh, H. A. (2021). Adaptive e-learning environment based on learning styles and its impact on development students’ engagement. International Journal of Educational Technology in Higher Education, 18(1). https://doi.org/10.1186/s41239-021-00289-4
  14. Fonggi, Y. A., & Oktavianus, T. (2021). Analysis of voice recognition system on Translator for daily use. Engineering, Mathematics and Computer Science Journal (EMACS), 3(2), 43-46. https://doi.org/10.21512/emacsjournal.v3i2.7018
  15. Gligorea, I., Cioca, M., Oancea, R., Gorski, A., Gorski, H., & Tudorache, P. (2023). Adaptive learning using artificial intelligence in e-Learning: A literature review. Education Sciences, 13(12), 1216. https://doi.org/10.3390/educsci13121216
  16. Gonçalves, T. S., Nicolás, B. I., & Cano, F. J. M. (2021). Mobile applications accessibility: An evaluation of the local Portuguese press. Informatics, 8(3), 52. https://doi.org/10.3390/informatics8030052
  17. Gottardi, W., De Almeida, J. F., & Tumolo, C. H. S. (2022). Automatic speech recognition and text-to-speech technologies for L2 pronunciation improvement. Texto Livre: Linguagem E Tecnologia, 15, e36736. https://doi.org/10.35699/1983-3652.2022.36736
  18. Hassan, L. (2023). Accessibility of games and game-based applications: A systematic literature review and mapping of future directions. New Media & Society. https://doi.org/10.1177/14614448231204020
  19. Ioannidi, V. (2023). Research on special and inclusive education in the context of higher rducation - Teachers’ views about labeling. International Journal of Learning and Development, 13(3), 65. https://doi.org/10.5296/ijld.v13i3.21211
  20. Kolhar, M., & Alameen, A. (2021). Artificial intelligence based language translation platform. Intelligent Automation and Soft Computing, 28(1), 1-9. https://doi.org/10.32604/iasc.2021.014995
  21. Kristensson, P. O., Lilley, J., Black, R., & Waller, A. (2020). A design engineering approach for quantitatively exploring context-aware sentence retrieval for nonspeaking individuals with motor disabilities. In CHI ’20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1-11). https://doi.org/10.1145/3313831.3376525
  22. Kurian, T. (2023). The next generation of AI for developers and Google Workspace. Google. Retrieved from https://blog.google/technology/ai/ai-developers-google-cloud-workspace/
  23. Lee, B. W., & Lee, J. H. (2023). Traditional readability formulas compared for English. arXiv. https://doi.org/10.48550/arxiv.2301.02975
  24. Leite, M. V. R., Scatalon, L. P., Freire, A. P., & Eler, M. M. (2021). Accessibility in the mobile development industry in Brazil: Awareness, knowledge, adoption, motivations and barriers. Journal of Systems and Software, 177, 110942. https://doi.org/10.1016/j.jss.2021.110942
  25. Lu, J., Liu, Y., Lv, T., & Meng, L. (2023). An emotional-aware mobile terminal accessibility-assisted recommendation system for the elderly based on haptic recognition. International Journal of Human–Computer Interaction, 1-17. https://doi.org/10.1080/10447318.2023.2266793
  26. Mayordomo-Martínez, D., De Gea, J. M. C., Garcıá-Mateos, G., García‐Berná, J. A., Fernández-Alemán, J. L., Rosero-López, S., Parada-Sarabia, S., & García-Hernández, M. (2019). Sustainable accessibility: A mobile app for helping people with disabilities to search accessible shops. International Journal of Environmental Research and Public Health, 16(4), 620. https://doi.org/10.3390/ijerph16040620
  27. McElaney, J. (2020). Accessibility in the news: Accessibility statements. Microassist.com. Retrieved from https://www.microassist.com/digital-accessibility/accessibility-inthe-news-accessibility-statement-pages/
  28. Microsoft. (2023). Set up your device to work with accessibility in Microsoft 365 - Microsoft Support. support.microsoft.com. Retrieved from https://support.microsoft.com/en-us/office/set-up-your-device-to-work-with-accessibility-in-microsoft-365-a0ca81c1-fa3e-417e-9d3b-78b8816fce58
  29. National Federation of the Blind. (2023). KNFB Reader. nfb.org. Retrieved from https://nfb.org/programs-services/knfb-reader
  30. Norwich, B. (2022). Research about inclusive education: Are the scope, reach and limits empirical and methodological and/or conceptual and evaluative? Frontiers in Education, 7, 937929. https://doi.org/10.3389/feduc.2022.937929
  31. Ogundokun, R. O., Awotunde, J. B., Misra, S., Segun-Owolabi, T., Adeniyi, E. A., & Jaglan, V. (2021). An android based language translator application. Journal of Physics, 1767(1), 012032. https://doi.org/10.1088/1742-6596/1767/1/012032
  32. Peng, H., Ma, S., & Spector, J. M. (2019). Personalized adaptive learning: An emerging pedagogical approach enabled by a smart learning environment. Smart Learning Environments, 6, 9. https://doi.org/10.1186/s40561-019-0089-y
  33. Perkins School for the Blind. (2022). Voice Dream Scanner and Voice Dream Reader demo - Perkins School for the Blind. Retrieved from https://www.perkins.org/resource/voice-dream-scanner-and-voice-dream-reader-demo/
  34. Pikhart, M. (2020). Intelligent information processing for language education: The use of artificial intelligence in language learning apps. Procedia Computer Science, 176, 1412-1419. https://doi.org/10.1016/j.procs.2020.09.151
  35. Pragt, L., Van Hengel, P., Grob, D., & Wasmann, J. A. (2022). Preliminary evaluation of automated speech recognition apps for the hearing impaired and deaf. Frontiers in Digital Health, 4. https://doi.org/10.3389/fdgth.2022.806076
  36. Putra, N., Padmadewi, N., & Budiarta, L. (2022). The effect of mindmeister in teaching English vocabulary to young learner. International Journal of Latest Research in Humanities and Social Science (IJLRHSS), 5(1), 88-98.
  37. Readable. (2019). Readability formulas - Readable. Retrieved from https://readable.com/features/readability-formulas/
  38. ReadSpeaker. (2023). Adding Text to Speech for Students and Learners to any Content. Retrieved from https://www.readspeaker.com/education/integrations/
  39. Rooein, D., Röttger, P., Shaitarova, A., & Hovy, D. (2024). Beyond Flesch-Kincaid: Prompt-based Metrics Improve Difficulty Classification of Educational Texts. Retrieved from https://arxiv.org/pdf/2405.09482
  40. Salah, N. B., Saâdi, I. B., & Ghézala, H. B. (2020). A multidimensional framework to study accessible guidance in u-learning systems for disabled learners. Procedia Computer Science, 176, 490-499. https://doi.org/10.1016/j.procs.2020.08.051
  41. Sankhi, P., & Sandnes, F. E. (2020). A glimpse into smartphone screen reader use among blind teenagers in rural Nepal. Disability and Rehabilitation: Assistive Technology, 17(8), 875-881. https://doi.org/10.1080/17483107.2020.1818298
  42. Semantix. (2023). Text-to-voice generators, apps & software. Semantix. Retrieved from https://www.semantix.com/resources/blog/text-to-voice-generators-apps-software
  43. Silva, T., Verde, D., Paiva, S., Barreto, L., & Pereira, A. I. (2023). Accessibility strategies to promote inclusive mobility through multi-objective approach. SN Applied Sciences, 5(5), 150. https://doi.org/10.1007/s42452-023-05349-0
  44. Standen, P., Brown, D. J., Taheri, M., Trigo, M. J. G., Boulton, H., Burton, A., Hallewell, M., Lathe, J., Shopland, N., Gonzalez, M. A. B., Kwiatkowska, G., Milli, E., Cobello, S., Mazzucato, A., Traversi, M., & Hortal, E. (2020). An evaluation of an adaptive learning system based on multimodal affect recognition for learners with intellectual disabilities. British Journal of Educational Technology, 51(5), 1748-1765. https://doi.org/10.1111/bjet.13010
  45. Student Accessibility Services. (2022). Apps and Programs Guide. Retrieved from https://www.conncoll.edu/media/SAS-Apps-and-Resources-List-10-2022.pdf
  46. Svobodová, Z., Kříž, J., & Veteška, J. (2024). Transformation of teaching through co-teaching and innovative methods. Acta Educationis Generalis, 14(3), 41-55. https://doi.org/10.2478/atd-2024-0017
  47. Texthelp. (2023). Read&Write for Education - reading, literacy & assistive software. Texthelp.com. Retrieved from https://www.texthelp.com/products/read-and-write-education/
  48. Todoranova, L., & Penchev, B. (2023). Higher education - Accessible for people with disabilities. Journal HR & Technologies, 2, 45-56.
  49. Yaseen, D. S., Batumalai, S. A., Ahmed, F. Y. H., & Fong, S. L. (2019). Improved disabled mobile aid application for Android : Health and fitness helper for disabled deople. In 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC) (pp. 207-212). https://doi.org/10.1109/icsgrc.2019.8837069
  50. Zong, J., Lee, C., Lundgard, A., Jang, J., Hajas, D., & Satyanarayan, A. (2022). Rich screen reader experiences for accessible data visualization. Computer Graphics Forum, 41(3), 15-27. https://doi.org/10.1111/cgf.14519
Language: English
Page range: 133 - 145
Submitted on: Jul 17, 2024
Accepted on: Nov 20, 2024
Published on: Feb 11, 2025
Published by: DTI University
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Radka Nacheva, published by DTI University
This work is licensed under the Creative Commons Attribution 4.0 License.