References
- Borhani-Darian, P., Li, H., Wu, P., & Closas, P. (2023). Deep learning of GNSS acquisition. Sensors, 23(3), 1566.
https://doi.org/10.3390/s23031566 - D. D. Jagiwala, S. N. S., & Desai, M. V. (2021). Case study: Navic performance observation on low latitude region [2021 2nd International Conference on Range Technology (ICORT), Chandipur, Balasore, India, 2021, pp. 1–6, doi: 10.1109/ICORT52730.2021.9581415].
- Desai, M. V., & Shah, S. N. (2021). Case study: Performance observation of navic ionodelay and positioning accuracy. IETE TECHNICAL REVIEW, 38, 256–266.
https://doi.org/10.1080/02564602.2020.1723445 - IFEN. (2024). Sx3 gnss sofware receiver [Preprint at url
https://www.ifen.com/receivers/sx3-gnss-software-receiver-for-rd/ ]. - Kumar, A., Dey, A., Sharma, N., Vasal, A., Mishra, S., & Urdhwareshe, R. (2024). NavIC L1C: Signal receiving and processing using software-defined receiver. Proceedings of the URSI Regional Conference on Radio Science (URSI-RCRS), –.
- Li, H., Borhani-Darian, P., Wu, P., & Closas, P. (2022). Deep neural network correlators for GNSS multipath mitigation. IEEE Transactions on Aerospace and Electronic Systems, 59(2), 1249–1259.
https://doi.org/10.1109/TAES.2022.3140424 - Mohanty, A., & Gao, G. (2024). A survey of machine learning techniques for improving global navigation satellite systems. EURASIP Journal on Advances in Signal Processing, 2024(1), 73.
https://doi.org/10.1186/s13634-024-01167-7 - Moradi, N., Nezhadshahbodaghi, M., & Mosavi, M. R. (2023). Gps signal acquisition based on deep convolutional neural network and post-correlation methods. GPS Solutions, 27(3), 132.
https://doi.org/10.1007/s10291-023-01469-7 - Organization, I. S. R. (Ed.). (Aug. 2017-a). Irnss signal-in-space icd for sps version 1.1. Indian Space Research Organization.
- Organization, I. S. R. (Ed.). (Aug. 2017-b). Signal-in-space icd for incois messages via navic messaging service version 1.2. Indian Space Research Organization.
- P. Angeletti, M. L., & Tognolatti, P. (2014). Software defined radio: A key technology for flexibility and reconfigurability in space applications. In MetroAeroSpace (Ed.), 2014 ieee metrology for aerospace (metroaerospace), benevento (pp. 399–403). IEEE.
- Pany, T., Akos, D. M., Arribas, J., Bhuiyan, M. Z. H., Closas, P., Dovis, F., Fernandez-Hernandez, I., Fernandez-Prades, C., Gunawardena, S., Humphreys, T. E., Kassas, Z. M., Lopez Salcedo, J. A., Nicola, M., Psiaki, M. L., Rügamer, A., Song, Y.-J., & Won, J.-H. (2024). GNSS Software-Defined Radio: History, Current Developments, and Standardization Efforts. NAVIGATION: Journal of the Institute of Navigation, 71(1), navi.628.
https://doi.org/10.33012/navi.628 - Ravindar Reddy D., S. C., & P., L. (2021). Low-cost real-time software receiver for irnss/navic short broadcast messaging services [34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021)].
- Spirent. (2024). Spirent gss9000 [
https://www.spirent.com/products/gnss-simulator-gss9000] . - Srinu C., L. P. (2020). A post processing based irnss/navic software receiver for analysis and development of new algorithms and signals [33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), September 22–25, 2020 At: St. Louis, Missouri, USA (Virtual)].