Have a personal or library account? Click to login
Geodetic Precession of the Sun, Solar System Planets, and their Satellites Cover

Geodetic Precession of the Sun, Solar System Planets, and their Satellites

Open Access
|Apr 2022

References

  1. Archinal B. A., A’Hearn M. F., Bowell E., Conrad A., Consolmagno G. J., Courtin R., Fukushima T., Hestroffer D., Hilton J. L., Krasinsky G. A., Neumann G., Oberst J., Seidelmann P. K., Stooke P., Tholen D. J., Thomas P. C., Williams I. P. (2011) Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009. Celest Mech Dyn Astr 109, 101–135; (https://doi.org/10.1007/s10569-010-9320-4).
  2. Archinal B.A., Acton C.H., A’Hearn M.F., Conrad A., Consolmagno G.J., Duxbury T., Hestroffer D., Hilton J. L., Kirk R. L., Klioner S. A., McCarthy D., Meech K., Oberst J., Ping J., Seidelmann P. K., Tholen D. J., Thomas P. C., Williams I. P. (2018) Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015, Celest. Mech. Dyn. Astron., Vol. 130, No. 22, 21–46; (https://doi.org/10.1007/s10569-017-9805-5).
  3. De Sitter W. (1916) On Einstein’s theory of Gravitation and its Astronomical Consequences, Monthly Notices of the Royal Astronomical Society, Vol. 76, No. 9, 699–728; (https://doi.org/10.1093/mnras/76.9.699).
  4. Eroshkin G.I., Pashkevich V.V. (2007) Geodetic rotation of the Solar system bodies, Artificial Satellites, Vol. 42, No. 1, pp. 59–70; (https://doi.org/10.2478/v10018-007-0017-1).
  5. Everitt C. W. F., DeBra D. B., Parkinson B. W., Turneaure J. P., Conklin J. W., Heifetz M. I.,. Keiser G. M, Silbergleit A. S., Holmes T., Kolodziejczak J., Al-Meshari M., Mester J. C., Muhlfelder B., Solomonik V., Stahl K., Worden P., Bencze W., Buchman S., Clarke B., Al-Jadaan A., Al-Jibreen H., Li J., Lipa J. A., Lockhart J. M., Al-Suwaidan B., Taber M., Wang S. (2011). “Gravity Probe B: Final Results of a Space Experiment to Test General Relativity”. Physical Review Letters. 106 (22): 221101.doi:10.1103/PhysRevLett.106.221101.arXiv:1105.3456. Bibcode:2011PhRvL.106v1101E. PMID 21702590. S2CID 11878715.
  6. Folkner W.F., Williams J.G., Boggs D.H., Park R.S., and Kuchynka P. (2014) The Planetary and Lunar Ephemerides DE430 and DE431, IPN Progress Report 42-196, February 15, 2014.
  7. Giorgini J.D., Yeomans D.K., Chamberlin A.B., Chodas P.W., Jacobson R.A., Keesey M.S., Lieske J.H., Ostro S.J., Standish E.M., Wimberly R.N. (1996) “JPL’s On-Line Solar System Data Service”, Bulletin of the American Astronomical Society, Vol. 28, No. 3, 1158.
  8. Klioner S.A., Gerlach E., and Soffel M.H. (2009) “Relativistic aspects of rotational motion of celestial bodies”, Proceedings IAU Symposium No. 261, 2009, 112–123; (https://doi.org/10.1017/S174392130999024X).
  9. Ma C., Arias E.F., Eubanks T.M., Fey A.L., Gontier A.-M., Jacobs C.S., Sovers O.J., Archinal B.A., Charlot P. (1998) The international celestial reference frame as realized by very long baseline interferometry, Astron. J., Vol. 116, No. 1, 516–546; (https://doi.org/10.1086/300408).
  10. Pashkevich V.V. (2016) New high-precision values of the geodetic rotation of the major planets, Pluto, the Moon and the Sun, Artificial Satellites, Journal of Planetary Geodesy, Vol. 51, No. 2, 61–73; (https://doi.org/10.1515/arsa-2016-0006).
  11. Pashkevich V.V., Vershkov A.N. (2019) New High-Precision Values of the Geodetic Rotation of the Mars Satellites System, Major Planets, Pluto, the Moon and the Sun, Artificial Satellites, Journal of Planetary Geodesy, Vol. 54, No. 2, 31–42; (https://doi.org/10.2478/arsa-2019-0004).
  12. Pashkevich V.V., Vershkov A.N. (2020) Relativistic effects in the rotation of Jupiter’s inner satellites, Artificial Satellites, Journal of Planetary Geodesy, Vol. 55, No. 3, 118–129; (https://doi.org/10.2478/arsa-2020-0009).
  13. Seidelmann P.K., Archinal B.A., A’Hearn M.F., Cruikshank D.P., Hilton J.L., Keller H.U., Oberst J., Simon J.L., Stooke P., Tholen D.J., and Thomas P.C. (2005) Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements: 2003, Celestial Mechanics and Dynamical Astronomy, 91, 203–215; (https://doi.org/10.1007/s10569-004-3115-4).
  14. Standish, E., Newhall, X. (1996). New accuracy levels for solar system ephemerides. Symposium - International Astronomical Union, 172, 29–36. (https://doi.org/10.1017/S0074180900127081)
  15. Suslov G.K. (1946): Theoretical mechanics. OGIZ, Moscow, (in Russian).
DOI: https://doi.org/10.2478/arsa-2022-0005 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 77 - 109
Submitted on: May 12, 2021
Accepted on: Mar 18, 2022
Published on: Apr 22, 2022
Published by: Polish Academy of Sciences, Space Research Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Vladimir V. Pashkevich, Andrey N. Vershkov, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons Attribution 4.0 License.