References
- Ansari, K., O. Corumluoglu, P. Verma & V. S. Pavelyev (2017) An overview of the international GNSS service (IGS). Grenze International Journal of Computer Theory and Engineering.
- Azami, H. & S. Sanei (2013) GPS GDOP classification via improved neural network trainings and principal component analysis. International Journal of Electronics, 101, 1300–1313.
- Azami, H., S. Sanei & H. Alizadeh. 2012. GPS GDOP Classification via Advanced Neural Network Training.
- Azami, H., M. D. Soltani & I. Tavakkolnia. 2016. An intelligent approach for classification of GPS satellites based on neural network, genetic algorithm and particle swarm optimization. In 2016 International Conference for Students on Applied Engineering (ICSAE), 70–74.
- Azarbad, M., H. Azami, S. Sanei & A. Ebrahimzadeh (2014) New Neural Network-based Approaches for GPS GDOP Classification based on Neuro-Fuzzy Inference System, Radial Basis Function, and Improved Bee Algorithm. Applied Soft Computing, 25, 285–292.
- Barrile, V., G. M. Meduri, G. Bilotta & U. M. Trungadi (2016) GPS-GIS and Neural Networks for Monitoring Control, Cataloging the Prediction and Prevention in Tectonically Active Areas. Procedia - Social and Behavioral Sciences, 223, 909–914.
- Beale, H. D., H. B. Demuth & M. Hagan (1996) Neural network design. Pws, Boston.
- Bear, J., A. H.-D. Cheng, S. Sorek, D. Ouazar & I. Herrera. 1999. Seawater intrusion in coastal aquifers: concepts, methods and practices. Springer Science & Business Media.
- Biswas, S. K., L. Qiao & A. G. Dempster (2017) Effect of PDOP on performance of Kalman Filters for GNSS-based space vehicle position estimation. GPS Solutions, 21, 1379–1387.
- Chandra, A. 2005. Surveying: Problem Solving with theory and objective type questions. New Age International.
- Chien-Sheng, C. & S. Szu-Lin (2010) Resilient Back-propagation Neural Network for Approximation 2-D GDOP. Lecture Notes in Engineering and Computer Science, 2181.
- Correa Muñoz, N. A. & L. A. Cerón-Calderón (2018) Precision and accuracy of the static GNSS system for surveying networks used in Civil Engineering. Ingeniería e Investigación, 38, 52–59.
- Davidovic, M. & N. Mijic (2017) ANALYSIS OF THE INFLUENCE OF SATELLITES CONSTELLATION IN GNSS POSITIONING ACCURACY. International Journal of Engineering, 15, 141–148.
- Dawson, J. & A. Woods (2010) ITRF to GDA94 coordinate transformations. Journal of Applied Geodesy, 4.
- Dogan, A. H., N. Tunalioglu, B. Erdogan & T. Ocalan (2018) Evaluation of the GPS Precise Point Positioning technique during the 21 July 2017 Kos-Bodrum (East Aegean Sea) Mw 6.6 earthquake. Arabian Journal of Geosciences, 11.
- El-naggar, A. M. (2011) Enhancing the accuracy of GPS point positioning by converting the single frequency data to dual frequency data. Alexandria Engineering Journal, 50, 237–243.
- El-Tokhey, M., Y. M. Mogahed, M. Mamdouh & T. W. Hassan (2018) Establishment of New Continuous Operating Reference Station (CORS) at Faculty of Engineering, Ain Shams University. International Journal of Engineering and Advanced Technology (IJEAT), ISSN, 2249–8958.
- El Manaily, E., M. Abd Rabbou, A. El-Shazly & M. Baraka (2017) Evaluation of Quad-Constellation GNSS Precise Point Positioning in Egypt. Artificial Satellites, 52, 9–18.
- Elshambaky, H. T. (2018) Application of neural network technique to determine a corrector surface for global geopotential model using GPS/levelling measurements in Egypt. Journal of Applied Geodesy, 12, 29–43.
- Elshambaky, H. T., M. R. Kaloop & J. W. Hu (2018) A novel three-direction datum transformation of geodetic coordinates for Egypt using artificial neural network approach. Arabian Journal of Geosciences, 11.
- Farah, A. (2017) Variation of Static-PPP Positioning Accuracy Using GPS-Single Frequency Observations (Aswan, Egypt). Artificial Satellites, 52, 19–26.
- Gera, G., R. Cossu, C. S. Regazzoni & L. Bruzzone (2011) A neural network based algorithm to performances enhancement of GNSS receivers in a multipath environment. Isip40 It, 45, 1130–1137.
- Ghoddousi-Fard, R. & P. Dare (2005) Online GPS processing services: an initial study. GPS Solutions, 10, 12–20.
- Han, S., Q. Gui, G. Li & Y. Du (2014) Minimum of PDOP and its applications in inter-satellite links (ISL) establishment of Walker-δ constellation. Advances in Space Research, 54, 726–733.
- Haykin, S. S. 2009. Neural networks and learning machines/Simon Haykin. New York: Prentice Hall.
- Heßelbarth, A. & L. Wanninger (2010) Performance of GNSS-PPP in Post-Processing Mode. Rostock-Warnemünde, Germany, 02–05.
- Inal, C., S. Bulbul & B. Bilgen (2018) Statistical analysis of accuracy and precision of GNSS receivers used in network RTK. Arabian Journal of Geosciences, 11.
- Jamieson, M. & D. T. Gillins (2018) Comparative analysis of online static GNSS postprocessing services. Journal of surveying engineering, 144, 05018002.
- Janowski, A. & J. Rapinski (2016) The Analyzes of PDOP Factors for a Zigbee Ground - Based Augmentation Systems. Polish Maritime Research, 24, 108–114.
- Jwo, D.-J. & C.-C. Lai (2006) Neural network-based GPS GDOP approximation and classification. GPS Solutions, 11, 51–60.
- Kaygısız, B. H., A. M. Erkmen & Í. Erkmen (2007) Enhancing positioning accuracy of GPS/INS system during GPS outages utilizing artificial neural network. Neural Processing Letters, 25, 171–186.
- Kim, M. & J. Kim (2015) Predicting IGS RTS Corrections Using ARMA Neural Networks. Mathematical Problems in Engineering, 2015, 1–11.
- Lemmon, T. R. & G. P. Gerdan (1999) The influence of the number of satellites on the accuracy of RTK GPS positions. Australian Surveyor, 44, 64–70.
- Li, X. (2008) Comparing the Kalman filter with a Monte Carlo-based artificial neural network in the INS/GPS vector gravimetric system. Journal of Geodesy, 83, 797–804.
- Malleswaran, M., V. Vaidehi & N. Sivasankari (2014) A novel approach to the integration of GPS and INS using recurrent neural networks with evolutionary optimization techniques. Aerospace Science and Technology, 32, 169–179.
- Martín, A., A. B. Anquela, R. Capilla & J. L. Berné (2011) PPP Technique Analysis Based on Time Convergence, Repeatability, IGS Products, Different Software Processing, and GPS+GLONASS Constellation. Journal of Surveying Engineering, 137, 99–108.
- McGaughey, R. J., K. Ahmed, H.-E. Andersen & S. E. Reutebuch (2017) Effect of occupation time on the horizontal accuracy of a mapping-grade GNSS receiver under dense forest canopy. Photogrammetric Engineering & Remote Sensing, 83, 861–868.
- Memarian Sorkhabi, O. (2015) Geoid determination based on log sigmoid function of artificial neural networks:(a case study: Iran). Journal of Artificial Intelligence in Electrical Engineering, 3, 18–24.
- Mohamed, H. F. (2015) Assessment of Factors Influencing Static GNSS Precise Point Positioning: A case study in Egypt. International Journal of Applied Science and Engineering Research, 4, 692–701.
- Mohammed, F. M., S. A. Aziez & H. N. Abdul-Rihda (2015) Comparison between wavelet and radial basis function neural networks for GPS prediction. Engineering and Technology Journal, 33, 560–572.
- Mosavi, M. R. & K. Mohammadi. 2002. Improve the position accuracy on low cost GPS receiver with adaptive neural networks. In Student Conference on Research and Development, 322–325.
- Nie, Z., Y. Gao, Z. Wang & S. Ji (2016) A new method for satellite selection with controllable weighted PDOP threshold. Survey Review, 49, 285–293.
- Öğütcü, S. & Í. Kalaycı (2018) Accuracy and precision of network-based RTK techniques as a function of baseline distance and occupation time. Arabian Journal of Geosciences, 11.
- Olyazadeh, R., H. Setan & N. Fouladinejad. 2011. Network Adjustment Program using MATLAB. In Geospatial World Forum.
- Ordóñez Galán, C., J. R. Rodríguez Pérez, S. García Cortés & A. Bernardo Sánchez (2013) Analysis of the influence of forestry environments on the accuracy of GPS measurements by means of recurrent neural networks. Mathematical and Computer Modelling, 57, 2016–2023.
- Rabbou, M. A. & A. El-Rabbany (2015) Precise Point Positioning using Multi-Constellation GNSS Observations for Kinematic Applications. Journal of Applied Geodesy, 9.
- Specht, C., M. Mania, M. Skóra & M. Specht (2015) Accuracy Of The GPS Positioning System In The Context Of Increasing The Number Of Satellites In The Constellation. 22, 9.
- Tafazoli, S., M. Mosavi & N. Rahemi (2011) Comparing GPS GDOP Approximation Accuracy using Recurrent Wavelet Neural Network and ARMA Modeling. JOURNAL OF INFORMATION AND COMMUNICATION TECHNOLOGIES, 1.
- Tafazoli, S. & M. R. Mosavi (2011) Performance Improvement of GPS GDOP Approximation Using Recurrent Wavelet Neural Network. Journal of Geographic Information System, 03, 318–322.
- Teng, Y. & J. Wang (2015) Some Remarks on PDOP and TDOP for Multi-GNSS Constellations. Journal of Navigation, 69, 145–155.
- Teunissen, P. J. G., R. Odolinski & D. Odijk (2013) Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles. Journal of Geodesy, 88, 335–350.
- Wang, Y., Z. Lu, Y. Qu, L. Li & N. Wang (2016) Improving prediction performance of GPS satellite clock bias based on wavelet neural network. GPS Solutions, 21, 523–534.
- Yang, Z., Y. Wang & O. Xu (2015) Improvement of the Positioning Accuracy in GNSS Positioning Based on Neural Network. Lecture Notes in Electrical Engineering, 334, 505–511.
- Yousef, M. A. & M. K. Ragheb (2014) Effect of Recording Interval on GPS Accuracy. Journal of Engineering Sciences, Assiut University, 42, 1215–1231.
- Zhang, G. P. (2000) Neural networks for classification: a survey. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 30, 451–462.
- Zhou, Y., J. Wan, Z. Li & Z. Song. 2017. GPS/INS integrated navigation with BP neural network and Kalman filter. In 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2515–2520.
- Ziggah, Y. Y., H. Youjian, A. Tierra, A. A. Konaté & Z. Hui (2016a) Performance evaluation of artificial neural networks for planimetric coordinate transformation–a case study, Ghana. Arabian Journal of Geosciences, 9.
- Ziggah, Y. Y., H. Youjian, X. Yu & L. P. Basommi (2016b) Capability of Artificial Neural Network for Forward Conversion of Geodetic Coordinates $$(\phi, \lambda,h)$$ (ϕ, λ, h) to Cartesian Coordinates (X, Y, Z). Mathematical Geosciences, 48, 687–721.