Have a personal or library account? Click to login
Efficient Cost-Effective Static-PPP Using Mixed GPS/Glonass Single-Frequency Observations (KSA) Cover

Efficient Cost-Effective Static-PPP Using Mixed GPS/Glonass Single-Frequency Observations (KSA)

By: Ashraf Farah  
Open Access
|Apr 2022

Abstract

Precise point positioning (PPP) is a GNSS positioning technique that saves cost and has an acceptable accuracy for enormous applications. PPP proved its efficiency through two decades comparing with traditional differential positioning technique. PPP uses one receiver collecting observations at an unknown station without the need for a reference station with known coordinates. PPP-collected observations must undergo extensive mitigation of different GNSS errors. Static-PPP accuracy depends mainly on the observations type (dual or single frequency), used systems (GPS or GLONASS or mixed GPS/GLONASS), satellites geometry, and observations duration. Static-PPP using dual-frequency observations gives optimum accuracy with a high cost. Static-PPP using single-frequency observations gives acceptable accuracy with a low cost. Since the end of 2012, PPP users are able to depend on GLONASS system as an alternative. This research investigates singe-frequency/static-PPP accuracy variation on KSA based on different factors: the system used (GPS or GLONASS or GPS/GLONASS), satellites geometry, observations duration, and ionosphere activity state. Observations from 2 days reflecting different ionospheric activity states were used for this research from three CORS stations (KSA-CORS network) operated by KSA-General Authority for Survey and Geospatial Information (KSA-GASGI). It can be concluded that precision (0.05 m lat., 0.12 m long., and 0.13 m height) under quiet ionosphere and precision (0.09 m lat., 0.20 m long., and 0.23 m height) under active ionosphere could be attained using 24 h mixed GPS/GLONASS single-frequency observations. Static-PPP using 24 h mixed GPS/GLONASS single-frequency observations’ accuracies are 0.01 m lat., 0.01 m long., and 0.03 m height (quiet ionosphere) and 0.01 m lat., 0.06 m long., and 0.06 m height (active ionosphere) compared to true station coordinates.

DOI: https://doi.org/10.2478/arsa-2022-0001 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 1 - 17
Submitted on: Aug 10, 2021
Accepted on: Jan 24, 2022
Published on: Apr 22, 2022
Published by: Polish Academy of Sciences, Space Research Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Ashraf Farah, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons Attribution 4.0 License.