Have a personal or library account? Click to login
Integration of Artificial Neural Network and the Optimal GNSS Satellites’ Configuration for Improving GNSS Positioning Techniques (A Case Study in Egypt) Cover

Integration of Artificial Neural Network and the Optimal GNSS Satellites’ Configuration for Improving GNSS Positioning Techniques (A Case Study in Egypt)

Open Access
|Apr 2022

Figures & Tables

Figure 1.

ANN architecture
ANN architecture

Figure 1.

Study area and IGS stations
Study area and IGS stations

Figure 3.

Methodology flowchart
Methodology flowchart

Figure 4.

Algorithm steps of the classification stage
Xi, Yi, Zi: coordinates values at each NOS, PDOP and ST
n: Number of the processed observations
Algorithm steps of the classification stage Xi, Yi, Zi: coordinates values at each NOS, PDOP and ST n: Number of the processed observations

Figure 5.

Algorithm steps of the ANN stage (binary numbers)
Algorithm steps of the ANN stage (binary numbers)

Figure 6.

A scheme displays the algorithm steps for producing reinitializing operation outputs (e.g., group 1)
A scheme displays the algorithm steps for producing reinitializing operation outputs (e.g., group 1)

Figure 7.

The prediction error represented by the 3D position error versus the number of hidden layers
The prediction error represented by the 3D position error versus the number of hidden layers

Figure 8.

The prediction error represented by the 3D position error versus number of neurons
The prediction error represented by the 3D position error versus number of neurons

Figure 9.

RMSE of X, Y, and Z directions and 3D position error according to the different groups of the number of initializations
RMSE of X, Y, and Z directions and 3D position error according to the different groups of the number of initializations

Figure 10.

The ANN designed from the results; its type is cascade forward net
The ANN designed from the results; its type is cascade forward net

Characteristics of IGS satellite ephemerides and clock products (2019)

TypeAccuracyLatencyUpdatesSample interval
GPS satellite ephemerides/satellite and station clocks
BroadcastOrbits~100 cmReal time--Daily
Sat. clocks

~5 ns RMS

~2.5 ns SD

Ultra-rapid (predicted half)Orbits~5 cmReal timeFour times/day15 min
Sat. clocks

~3 ns RMS

~1.5 ns SD

Ultra-rapid (observed half)Orbits~3 cm3–9 hFour times/day15 min
Sat. clocks

~150 ps RMS

~50 ps SD

RapidOrbits~2.5 cm17–41 hOne time/day15 min
Sat. and stn clocks

~75 ps RMS

~25 ps SD

5 min
FinalOrbits~2.5 cm12–18 daysOne time/week15 min
Sat. and stn clocks

~75 ps RMS

~20 ps SD

Sat.: 30 s

Stn.: 5 min

GLONASS satellite ephemerides
FinalOrbits~3 cm12–18 daysEvery Thursday15 min
where: ns = nanosecond, ps = picosecond, UTC =Universal Coordinated Time, RMS = Root Mean Square errors, SD = standard deviation

The effect of different transfer functions’ constellation on ANN performance in the case of binary and decimal numbers (part 1/3)

Transfer functions (hidden–output) layerBinary numbers
XYZ
σx (m)MSE (m)NOFσY (m)MSE (m)NOFσZ(m)MSE (m)NOF
a) Baltim stationTansig–Purelin0.1120.00810.4040.02060.2540.0254
Tansig–LogsigNaNNaN100NaNNaN100NaNNaN100
Tansig–Tansig0.1030.00520.3190.0077 0.050 0.0035
Logsig–Purelin 0.051 0.002 0 0.189 0.005 2 0.057 0.002 3
Logsig–LogsigNaNNaN100NaNNaN100NaNNaN100
Logsig–Tansig0.1710.03830.4950.085130.2820.04019
Purelin–Purelin1.0480.09470.9550.08720.4890.0546
Purelin–LogsigNaNNaN100NaNNaN100NaNNaN100
Purelin–Tansig0.5370.04170.8050.04960.6690.0857
Transfer functions (hidden–output) layerDecimal numbers
X, Y and Z
σx (m)σy (m)σz (m)MSE (m)NOF
Purelin–Purelin0.1130.2740.1582 × 10-60
The other constellations of transfer functionsNaNNaNNaNNaN100
b) Suez stationTransfer functions (hidden–output) layerBinary numbers
XYZ
σx (m)MSE (m)NOFσY (m)MSE (m)NOFσZ (m)MSE (m)NOF
Tansig–Purelin0.1650.00430.2270.01330.1860.0072
Tansig–LogsigNaNNaN100NaNNaN100NaNNaN100
Tansig–Tansig0.1830.00530.1850.00950.1960.0177
Logsig–Purelin0.0950.00210.1330.00500.1170.0011
Logsig–LogsigNaNNaN100NaNNaN100NaNNaN100
Logsig–Tansig0.2450.02170.4010.00560.2930.0046
Purelin–Purelin0.4980.08160.5540.07130.6170.0323
Purelin–LogsigNaNNaN100NaNNaN100NaNNaN100
Purelin–Tansig0.6320.03560.4880.04540.6500.03510
Transfer functions (hidden–output) layerDecimal numbers
X, Y and Z
σx (m)σy (m)σz (m)MSE (m)NOF
Purelin–Purelin0.1710.2060.2563 × 10-81
The other constellations of transfer functionsNaNNaNNaNNaN100

The effect of different transfer functions’ constellation on ANN performance in the case of binary and decimal numbers (part 2/3)

Transfer functions (hidden–output) layerBinary numbers
XYZ
σx (m)MSE (m)NOFσY (m)MSE (m)NOFσZ (m)MSE (m)NOF
c) Helwan stationTansig–Purelin0.0420.00730.1560.00830.1230.0093
Tansig–LogsigNaNNaN100NaNNaN100NaNNaN100
Tansig–Tansig0.0650.00550.1920.01250.0990.0045
Logsig–Purelin0.0480.00420.1290.00230.0860.0102
Logsig–LogsigNaNNaN100NaNNaN100NaNNaN100
Logsig–Tansig0.2750.01320.3520.00760.3560.0326
Purelin–Purelin0.5200.02740.5810.03540.4920.0097
Purelin–LogsigNaNNaN100NaNNaN100NaNNaN100
Purelin–Tansig0.4520.00850.6110.04150.4700.0365
Transfer functions (hidden–output) layerDecimal numbers
X, Y and Z
σx (m)σy (m)σz (m)MSE (m)NOF
Purelin–Purelin0.1570.3050.2765 × 10-72
The other constellations of transfer functionsNaNNaNNaNNaN100
d) Cairo stationTransfer functions (hidden–output) layerBinary numbers
XYZ
σx (m)MSE (m)NOFσY (m)MSE (m)NOFσZ (m)MSE (m)NOF
Tansig–Purelin0.1430.00740.0310.01030.1330.0082
Tansig–LogsigNaNNaN100NaNNaN100NaNNaN100
Tansig–Tansig0.1270.00130.1080.00840.1860.0153
Logsig–Purelin0.0730.00420.0140.00620.0520.0032
Logsig–LogsigNaNNaN100NaNNaN100NaNNaN100
Logsig–Tansig0.2720.00950.3580.03150.2960.0025
Purelin–Purelin0.3820.01240.3990.02330.4880.0477
Purelin–LogsigNaNNaN100NaNNaN100NaNNaN100
Purelin–Tansig0.4840.02360.5110.04550.3880.0714
Transfer functions (hidden–output) layerDecimal numbers
X, Y and Z
σx (m)σy (m)σx (m)MSE (m)NOF
Purelin–Purelin0.2730.2420.3380.0060
The other constellations of transfer functionsNaNNaNNaNNaN100

The tested parameters in the ANN algorithm

Test no. Transfer functionANN typeNHLNONNOI
1 Transfer function XFit net110100
2 ANN type The optimal at test 1X110100
3 NHL The optimal at test 1The optimal at test 2X10100
4 NON The optimal at test 1The optimal at test 2The optimal at test 3X100
5 NOI The optimal at test 1The optimal at test 2The optimal at test 3The optimal at test 4X

The SD of X, Y, and Z coordinates, 3D position error, and elapsed time for three different types of ANN

StationPattern netFit netCascade forward net
σx(m)σY(m)σZ(m)σP(m)Elapsed time (s)σx(m)σY(m)σZ(m)σP(m)Elapsed time(s)σx(m)σY(m)σZ(m)σP(m)Elapsed time(s)
Baltim 0.0900.2630.0710.28744.40.0560.2190.0300.22838.80.0430.1880.0210.19427.9
Suez 0.0780.1180.1570.21147.30.0720.1010.1060.16336.20.0770.0990.1030.16224.4
Helwan 0.1270.1930.0890.24845.80.0890.1520.0760.19237.40.0840.1460.0790.18627.2
Cairo 0.1610.0680.1180.21146.90.1150.0440.0660.14035.10.0840.0290.0480.10128.9
Assiut 0.2270.2240.4480.55049.70.1790.1980.4310.50739.50.1470.1790.4250.48426.8

The averages of SDs in the directions of the coordinate axes, 3D position error, and elapsed time for the four groups of initialization numbers

StationGroup 1Group 2Group 3Group 4
Nt valuesElapsed time (h)Nt valuesElapsed time (h)Nt valuesElapsed time (h)Nt valuesElapsed time (h)
1–100.0210–1000.15100–10001.51000–10,00015.5
σm(X)(m)σm(Y)(m)σm(Z)(m)σm(P)(m)σm(X)(m)σm(Y)(m)σm(Z)(m)σm(P)(m)σm(X)(m)σm(Y)(m)σm(Z)(m)σm(P)(m)σm(X)(m)σm(Y)(m)σm(Z)(m)σm(P)(m)
Baltim 0.0800.1950.0400.2150.0680.1740.0360.1910.0420.1370.0190.1450.0170.0800.0090.083
Suez 0.0940.1280.1050.1900.0870.1190.1010.1790.0680.0850.0820.1370.0450.0350.0440.074
Helwan 0.0670.1770.0860.2080.0580.1420.0670.1680.0520.1070.0490.1290.0340.0650.0300.080
Cairo 0.0830.0440.0350.1000.0660.0360.0360.0840.0470.0300.0360.0660.0260.0230.0240.043
Assiut 0.1840.2160.5720.6390.1640.1960.4530.5200.1340.1720.3500.4130.1030.1250.2490.297

The coordinates’ differences between the known points and the output data, and the position errors for the three main stages and IGS final orbits in the case of GNSS-dual frequency

StationPost-processing (broadcast ephemerides)Post-processing (final orbits)Classification algorithmANN algorithm
dX(m)dY(m)dZ(m)Position error(m)dX(m)dY(m)dZ(m)Position error(m)dX(m)dY(m)dZ(m)Position error(m)dX(m)dY(m)dZ(m)Position error(m)
Baltim 0.0500.0200.0030.0540.0010.0020.0040.0050.0340.0110.0090.0370.0110.0070.0080.015
Suez 0.0060.0030.0060.0090.0030.0070.0030.0080.0030.0020.0040.0050.0020.0030.0040.005
Helwan 0.0470.0400.0190.0650.0150.0150.0110.0240.0240.0210.0240.0400.0170.0160.0210.031
Cairo 0.0220.0140.0130.0290.0150.0100.0190.0260.0170.0120.0150.0260.0110.0070.0120.018
Assiut 0.1570.0510.3220.3620.0440.0830.1100.1450.1030.0620.2200.2510.0510.0210.1530.163

Precision improvement due to applying classification and ANN algorithms in the two cases of observations

Percentage of improvement (%)
StationSingle-frequency observationsDual-frequency observations
Classification algorithmANN algorithmClassification algorithmANN algorithmIGS final orbits
Baltim 2879317291
Suez 377044 44 11
Helwan 3966385263
Cairo 165010 38 10
Assiut 3262315560

The differences in coordinates between the known points and the output data, and the position errors for the three main stages in the case of GNSS-single frequency

StationPost-processing (broadcast ephemerides)Classification algorithmANN algorithm
dX(m)dY(m)dZ(m)Position error(m)dX(m)dY(m)dZ(m)Position error(m)dX(m)dY(m)dZ(m)Position error(m)
Baltim 0.1180.3090.0460.3340.0900.2200.0470.2420.0310.060.0210.071
Suez 0.1450.2620.1340.3280.1040.1410.1120.2080.0520.0540.0630.098
Helwan 0.1230.2770.2040.3650.0750.1900.0920.2240.0780.0810.0510.123
Cairo 0.0930.0450.0540.1170.0810.0460.0310.0980.0420.0270.0300.058
Assiut 0.2860.3300.9921.0840.1900.2410.6750.7410.1010.1320.3810.416

Data sources

StationStation typeGNSS instrumentReference coordinates
LongitudeLatitudeEllipsoidal height, mSource
°°
DRAG IGSLeica GRX1200352331.46180313535.528831.834SOPAC
RAMO IGSLeica RS500344547.31050303551.38602886.829SOPAC
Baltim TestTrimble R8310449.15000313545.4207031.163CSRS
Suez TestTrimble R8323622.45620300709.5308053.827CSRS
Helwan TestTrimble R8312037.30370295133.72150135.055CSRS
Cairo TestLeica GR10311416.45330300243.3349068.268CSRS
Assiut TestAshtech Z-Xtreme311019.90010271112.1204091.420CSRS

The parameters involved in the ANN algorithm

EpochGoalMax_failMin_failMuLearning rate
1000061e-70.0010.01

The effect of different transfer functions’ constellation on ANN performance in the case of binary and decimal numbers (part 3/3)

Transfer functions (hidden–output) layerBinary numbers
XYZ
σx (m)MSE (m)NOFσY (m)MSE (m)NOFσZ (m)MSE (m)NOF
e) Assiut stationTansig–Purelin0.2190.00830.3270.01010.5300.0166
Tansig–LogsigNaNNaN100NaNNaN100NaNNaN100
Tansig–Tansig0.1770.00440.2940.01320.5490.0175
Logsig–Purelin0.1490.00620.2250.00700.4810.0155
Logsig–LogsigNaNNaN100NaNNaN100NaNNaN100
Logsig–Tansig0.3140.00950.4700.02340.6400.0227
Purelin–Purelin0.4330.01440.4020.03620.6910.03514
Purelin–LogsigNaNNaN100NaNNaN100NaNNaN100
Purelin–Tansig0.5030.07140.6300.61000.7470.05115
Transfer functions (hidden–output) layerDecimal numbers
X, Y and Z
σx (m)σy (m)σz (m)MSE (m)NOF
Purelin–Purelin0.2590.3010.6060.0037
The other constellations of transfer functionsNaNNaNNaNNaN100
DOI: https://doi.org/10.2478/arsa-2022-0002 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 18 - 46
Submitted on: Jul 7, 2021
Accepted on: Feb 2, 2022
Published on: Apr 22, 2022
Published by: Polish Academy of Sciences, Space Research Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Mustafa K. Alemam, Bin Yong, Abubakar S. Mohammed, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons Attribution 4.0 License.