Have a personal or library account? Click to login
Effects of dietary yeast culture on humoral and mucosal immunity, gut microbiota, hepatic antioxidant and stress responses in rainbow trout, Oncorhynchus mykiss Cover

Effects of dietary yeast culture on humoral and mucosal immunity, gut microbiota, hepatic antioxidant and stress responses in rainbow trout, Oncorhynchus mykiss

Open Access
|Aug 2025

References

  1. Abass D.A., Obirikorang K.A., Campion B.B., Edziyie R.E., Skov P.V., (2018). Dietary supplementation of yeast (Saccharomyces cerevisiae) improves growth, stress tolerance, and disease resistance in juvenile Nile tilapia (Oreochromis niloticus). Aquac. Int., 26: 843–855.
  2. Abdel-Tawwab M., Adeshina I., Issa Z.A., (2020). Antioxidants and immune responses, resistance to Aspergilus flavus infection, and growth performance of Nile tilapia, Oreochromis niloticus, fed diets supplemented with yeast, Saccharomyces serevisiae. Animal feed science and technology, 263: 114484.
  3. Abdel‐Tawwab M., Mousa M.A., Mohammed M.A., (2010). Use of live baker’s yeast, Saccharomyces cerevisiae, in practical diet to enhance the growth performance of Galilee tilapia, Sarotherodon galilaeus (L.), and its resistance to environmental copper toxicity. J. World. Aquac. Soc., 41: 214–223.
  4. Ainsworth A.J., (1992). Fish granulocytes: Morphology, distribution, and function. Annu. Rev. Fish Dis., 2: 123–148.
  5. Barton B.A., (2002). Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol., 42: 517–525.
  6. Bavia L., Santiesteban-Lores L.E., Carneiro M.C., Prodocimo M.M., (2022). Advances in the complement system of a teleost fish, Oreochromis niloticus. Fish Shellfish Immunol., 123: 61–74.
  7. Blaxhall P.C., (1972). The haematological assessment of the health of freshwater fish. J. Fish Biol., 4: 593–604.
  8. Chen J., Dong Z., Lei Y., Yang Y., Guo Z., Ye J., (2022). β-glucan mitigation on toxicological effects in monocytes/macrophages of Nile tilapia (Oreochromis niloticus) following copper exposure. Fish Shellfish Immunol., 121: 124–134.
  9. Chiu C.-H., Cheng C.-H., Gua W.-R., Guu Y.-K., Cheng W., (2010). Dietary administration of the probiotic, Saccharomyces cerevisiae P13, enhanced the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish Shellfish Immunol., 29: 1053–1059.
  10. Cid García R.A., Hernández Hernández L.H., Carrillo Longoria J.A., Fernández Araiza M.A., (2020). Inclusion of yeast and/or fructooligosaccharides in diets with plant-origin protein concentrates for rainbow trout (Oncorhynchus mykiss) fingerlings. J. World. Aquac. Soc., 51: 970–981.
  11. Ciji A., Akhtar M.S., (2021). Stress management in aquaculture: a review of dietary interventions. Rev Aquacult, 13: 2190–2247.
  12. Czerucka D., Piche T., Rampal P., (2007). Review article: yeast as probiotics –Saccharomyces boulardii. Aliment. Pharmacol. Ther., 26: 767–778.
  13. Dacie J., Lewis S., (1996). Practical hematology. Charchill and Livingston, London.
  14. de Mattos B.O., López-Olmeda J.F., Guerra-Santos B., Ruiz C.E., García-Beltrán J.M., Ángeles-Esteban M., Sánchez-Vázquez F.J., Fortes-Silva R., (2019). Coping with exposure to hypoxia: modifications in stress parameters in gilthead seabream (Sparus aurata) fed spirulina (Arthrospira platensis) and brewer’s yeast (Saccharomyces cerevisiae). Fish Physiol. Biochem., 45: 1801–1812.
  15. del Valle J.C., Bonadero M.C., Fernández-Gimenez A.V., (2023). Saccharomyces cerevisiae as probiotic, prebiotic, synbiotic, postbiotics and parabiotics in aquaculture: An overview. Aquaculture, 569: 739342.
  16. El-Bab A.F.F., Saghir S.A.M., El-Naser I.A., El-Kheir S.M.M.A., Abdel-Kader M.F., Alruhaimi R.S., Alqhtani H.A., Mahmoud A.M., Naiel M.A.E., El-Raghi A.A., (2022). The effect of dietary Saccharomyces cerevisiae on growth performance, oxidative status, and immune response of sea bream (Sparus aurata). Life, 12: 1013.
  17. Ellis A.E., (1990). Lysozyme assays. in: Stolen, J.S. (Ed.), Techniques in fish immunology. SOS publication, Fair Haven, pp. 101–103.
  18. FAO, (2023). Fishery statistical collections: global aquaculture production. FAO, Roma, Italy, pp. 2.
  19. Faught E., Vijayan M.M., (2016). Mechanisms of cortisol action in fish hepatocytes. Comparative biochemistry and physiology part B: Biochemistry and molecular biology, 199: 136–145.
  20. Feng Z., Zhong Y., He G., Sun H., Chen Y., Zhou W., Lin S., (2022). Yeast culture improved the growth performance, liver function, intestinal barrier and microbiota of juvenile largemouth bass (Micropterus salmoides) fed high-starch diet. Fish Shellfish Immunol., 120: 706–715.
  21. Gopalakannan A., Arul V., (2010). Enhancement of the innate immune system and disease‐ resistant activity in Cyprinus carpio by oral administration of β‐glucan and whole cell yeast. Aquac. Res., 41: 884–892.
  22. Goth L., (1991). A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta, 196: 143–151.
  23. Hassanalizadeh Chari F., Akrami R., Ghelichi A., Ebrahimi P., (2020). The effect of Lavandula officinalis nanoemulsion on growth performance, body composition, haematology and immunity parameters of Oncorhynchus mykiss. Journal of applied animal research, 48: 340–347.
  24. Hoseini S.M., Yousefi M., (2019). Beneficial effects of thyme (Thymus vulgaris) extract on oxytetracycline-induced stress response, immunosuppression, oxidative stress and enzymatic changes in rainbow trout (Oncorhynchus mykiss). Aquacult Nutr, 25: 298–309.
  25. Hoseinifar S.H., Mirvaghefi A., Merrifield D.L., (2011). The effects of dietary inactive brewer’s yeast Saccharomyces cerevisiae var. ellipsoideus on the growth, physiological responses and gut microbiota of juvenile beluga (Huso huso). Aquaculture, 318: 90–94.
  26. Hoseinifar S.H., Sun Y.-Z., Wang A., Zhou Z., (2018). Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Frontiers in microbiology, 9: 2429.
  27. Hoseinifar S.H., Yousefi S., Van Doan H., Ashouri G., Gioacchini G., Maradonna F., Carnevali O., (2021). Oxidative stress and antioxidant defense in fish: the implications of probiotic, prebiotic, and synbiotics. Reviews in fisheries science & aquaculture, 29: 198–217.
  28. Lee C.-S., Lim C., Webster C.D., (2015). Dietary nutrients, additives, and fish health. Wiley-Blackwell, NJ, USA.
  29. Li P., Gatlin D.M., (2003). Evaluation of brewers yeast (Saccharomyces cerevisiae) as a feed supplement for hybrid striped bass (Morone chrysops×M. saxatilis). Aquaculture, 219: 681–692.
  30. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193: 265–275.
  31. Meena D., Das P., Kumar S., Mandal S., Prusty A., Singh S., Akhtar M., Behera B., Kumar K., Pal A., (2013). Beta-glucan: an ideal immunostimulant in aquaculture (a review). Fish Physiol. Biochem., 39: 431–457.
  32. Nhinh D.T., Le D.V., Van K.V., Huong Giang N.T., Dang L.T., Hoai T.D., (2021). Prevalence, virulence gene distribution and alarming the multidrug resistance of Aeromonas hydrophila associated with disease outbreaks in freshwater aquaculture, Antibiotics.
  33. Rauta P.R., Nayak B., Das S., (2012). Immune system and immune responses in fish and their role in comparative immunity study: A model for higher organisms. Immunol. Lett., 148: 23–33.
  34. Rawling M., Leclercq E., Foey A., Castex M., Merrifield D., (2021). A novel dietary multi-strain yeast fraction modulates intestinal toll-like-receptor signalling and mucosal responses of rainbow trout (Oncorhynchus mykiss). PLoS One, 16: e0245021.
  35. Reverter M., Tapissier-Bontemps N., Lecchini D., Banaigs B., Sasal P., (2018). Biological and ecological roles of external fish mucus: A review. Fishes, 3: 41.
  36. Richard N., Costas B., Machado M., Fernández-Boo S., Girons A., Dias J., Corraze G., Terrier F., Marchand Y., Skiba-Cassy S., (2021). Inclusion of a protein-rich yeast fraction in rainbow trout plant-based diet: Consequences on growth performances, flesh fatty acid profile and health-related parameters. Aquaculture, 544: 737132.
  37. Singh S.K., Aravamudhan S., Armant O., Krüger M., Grabher C., (2014). Proteome dynamics in neutrophils of adult zebrafish upon chemically-induced inflammation. Fish Shellfish Immunol., 40: 217–224.
  38. Song Q., Xiao Y., Xiao Z., Liu T., Li J., Li P., Han F., (2021). Lysozymes in fish. J. Agric. Food Chem., 69: 15039–15051.
  39. Sutthi N., Thaimuangphol W., (2020). Effects of yeast (Saccharomyces cerevisiae) on growth performances, body composition and blood chemistry of Nile tilapia (Oreochromis niloticus Linnaeus, 1758) under different salinity conditions. Iranian journal of fisheries sciences, 19: 1428–1446.
  40. Talwar C., Nagar S., Lal R., Negi R.K., (2018). Fish gut microbiome: Current approaches and future perspectives. Indian J. Microbiol., 58: 397–414.
  41. Torrecillas S., Montero D., Izquierdo M., (2014). Improved health and growth of fish fed mannan oligosaccharides: Potential mode of action. Fish Shellfish Immunol., 36: 525–544.
  42. Tovar-Ramírez D., Mazurais D., Gatesoupe J., Quazuguel P., Cahu C., Zambonino-Infante J., (2010). Dietary probiotic live yeast modulates antioxidant enzyme activities and gene expression of sea bass (Dicentrarchus labrax) larvae. Aquaculture, 300: 142–147.
  43. Tovar-Ramıŕez D., Zambonino Infante J., Cahu C., Gatesoupe F.J., Vázquez-Juárez R., (2004). Influence of dietary live yeast on European sea bass (Dicentrarchus labrax) larval development. Aquaculture, 234: 415–427.
  44. Woo P.T., Bruno D.W., (2011). Fish diseases and disorders. Volume 3: viral, bacterial and fungal infections. Cabi, FL, USA.
  45. Yano T., (1992). Assays of hemolytic complement activity. in: Stolen, J.S. (Ed.), Techniques in fish immunology. SOS publication, Fair haven, pp. 131–141.
  46. Yousefi M., Adineh H., Taheri Mirghaed A., Hoseini S.M., (2025). Co-supplementation of diet with Saccharomyces cerevisiae and thymol: Effects on growth performance, antioxidant and immunological responses of rainbow trout, Oncorhynchus mykiss. Animals, 15: 302.
  47. Zargham D., Emtiazjoo M., Sahafi H., Bashti T., Razmi K., (2011). The effect of probiotic Saccharomyces cerevisiae strain: ptcc5052 on growth parameters and survival of rainbow trout (Oncorhynchus mykiss) larvae. Advances in environmental biology, 5: 1393–1400.
DOI: https://doi.org/10.2478/aoas-2025-0093 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Submitted on: May 21, 2025
Accepted on: Aug 8, 2025
Published on: Aug 29, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Seyyed Morteza Hoseini, Morteza Yousefi, Evgeny Vladimirovich Kulikov, Yury Anatolyevich Vatnikov, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT