References
- Abdel-Moneim A., Yones M. (2010). Effect of lupin kernel meal as plant protein source in diets of red hybrid tilapia (Oreochromis niloticus × O. mossambicus), on growth performance and nutrients utilization. Afr. J. Biol. Sci., 6: 1–16.
- Ahmed M., Liang H., Chisomo Kasiya H, et al. (2019). Complete replacement of fish meal by plant protein ingredients with dietary essential amino acids supplementation for juvenile blunt snout bream (Megalobrama amblycephala). Aquacu. Nutr., 25: 205–214.
- Alayu Y., Getahun A., Dejen E. (2019). Effect of replacing fish meal by sweet lupin meal on growth performance of African catfish fingerlings, Clarias gariepinus (Burchell, 1822). Ethiop. J. Sci. Technol., 12: 1-17.
- Amaral D., Filipe D.M., Cavalheri T.F., Vieira L., Magalhães R.P., Belo I., Peres H., Ozório R.O.De A. (2023) Solid-State Fermentation of Plant Feedstuff Mixture Affected the Physiological Responses of European Seabass (Dicentrarchus labrax) Reared at Different Temperatures and Subjected to Salinity Oscillation. Animals, 13: 393.
- Anwar A., Alex HL Wan., Omar S., El-Haroun E., Davies S. J., (2020). The potential of a solid-state fermentation supplement to augment white lupin (Lupinus albus) meal incorporation in diets for farmed common carp (Cyprinus carpio). Aquac. Rep., 17: 100348.
- AOAC (2016). Official Methods of Analysis, 20th edition. AOAC International, Washington DC, USA.
- Bórquez A.S., Hernández A.J., Dantagnan P., Saez P., Serrano E. (2011 b). ‘Incorporation of Whole Lupin, Lupinus albus, Seed Meal in Commercial Extruded Diets for Rainbow Trout, (Oncorhynchus mykiss): Effect on Growth Performance, Nutrient Digestibility, and Muscle Fatty Acid Composition’. J. World. Aquac. Soc., 42: 209-221.
- Borquez A., Serrano E., Dantagnan P., Carrasco J., Hernandez A. (2011 a). Feeding high inclusion of whole grain white lupin (Lupinus albus) to rainbow trout (Oncorhynchus mykiss): effects on growth, nutrient digestibility, liver and intestine histology and muscle fatty acid composition. Aquac. Res., 42: 1067-1078.
- Bowyer P., El-Haroun E.R., Salim H.S., Davies S.J. (2020). Benefits of a Commercial solid-state fermentation (SSF) product on growth performance, feed efficiency and gut morphology of juvenile Nile tilapia (Oreochromis niloticus) fed different UK lupin meal cultivars. Aquaculture, 523: 735192.
- Bransden M., Carter C., Nowak B. (2001). Effects of dietary protein source on growth, immune function, blood chemistry and disease resistance of Atlantic salmon (Salmo salar L.) parr. Anim. Sci., 73: 105-114.
- Carter C.G., Sajjadi M. (2011). Low fishmeal diets for Atlantic salmon, Salmo salar L., using soy protein concentrate treated with graded levels of phytase. Aquac. Inte., 19: 431-444.
- César B-D., Mauricio O-N., Wandersleben T., Monserrat S-A., Tamara Barahona and Mariela Bustamante. (2019). Chemical and Nutritional Evaluation of Protein-Rich Ingredients Obtained through a Technological Process from Yellow Lupin Seeds (Lupinus luteus). Plant. Foods for. Hum. Nutr., 74: 508–517.
- Chen S., Paengkoum P., Xia X., Na-Lumpang P. (2010). Effects of dietary protein on ruminal fermentation, nitrogen utilization and crude protein maintenance in growing Thai-indigenous beef cattle fed rice straw as roughage. J. Anim. Vet. Adv., 8: 1131-1136.
- Czubinski J., Dwiecki K., Siger A., Neunert G., Lampart- Szczapa E. (2014). Characterisation of different digestion susceptibility of lupin seed globulins. Food Chem., 143: 418–426.
- Darwish G.A., Bakr A., Abdallah M. (2012). Nutritional value upgrading of maize stalk by using Pleurotus ostreatus and Saccharomyces cerevisiae in solid state fermentation. Ann. Agric. Sci., 57: 47-51.
- Davies S.J., El-Haroun E.R., Mohamed S. Hassaan., Bowyer P.H. (2021). A Solid- State Fermentation (SSF) supplement improved performance, digestive function, and gut ultrastructure of rainbow trout (Oncorhynchus mykiss) fed plant protein diets containing yellow lupin meal. Aquaculture, 545: 737177.
- Davies S.J., Guroyd G., Hassaan M., El-Ajnaf S.M., El-Haroun E. (2020). Nutritional evaluation of a novel co-fermented apple-pomace, molasses, and formic acid generated sardine-based fish silages as ingredients in diets for juvenile European sea bass (Dicentrachus labrax). Aquaculture, 521: 735087.
- Diógenes A.F., Castro C., Carvalho M., Magalhães R., Estevão- Rodrigues T.T., Serra C.R., Oliva-Teles A., Peres H. (2018). Exogenous enzymes supplementation enhances diet digestibility and digestive function and affects intestinal microbiota of turbot (Scophthalmus maximus) juveniles fed distillers’ dried grains with solubles (DDGS) based diets. Aquaculture, 486: 42–50.
- Egwim C., Onwuchekwa P. (2016). Production of animal feed concentrates from sour sop and pineapple peels using solid state fermentation. J. Anim. Sci. Adv., 6: 1630-1635.
- Enyidi U.D., Etim E.O. (2018). Use of solid state fermented bambaranut meal as substitute of fishmeal in the diets of African catfish Clarias gariepinus. Iran J. Fisher. Sci., 2: 22.
- Espe M., Rathore R.M., Du Z., Liaset B., El-Mowafi A. (2010). Methionine Limitation results in increased hepatic FAS activity, higher liver 18: 1 to 18: 0 fatty acid ratio and hepatic TAG accumulation in Atlantic salmon, Salmo salar. Amino. Acids., 39: 449–460.
- FAO (2024). Cultured aquatic species information programme – Oncorhynchus mykiss (Walbaum, 1792).
- Ghanei-Motlagh R., Mohammadian T., Gharibi D., Khosravi M., Mahmoudi E., Zarea M., El-Matbouli M., Menanteau-Ledouble S. (2021). Quorum quenching probiotics modulated digestive enzymes activity, growth performance, gut microflora, haemato-biochemical parameters, and resistance against Vibrio harveyi in Asian seabass (Lates calcarifer). Aquaculture, 531: 735874.
- Glencross B.D., Rutherford N.R., Hawkins W.E. (2011): A comparison of the growth performance of rainbow trout when fed soybean, narrow-leaf or yellow lupin kernel meals in extruded diets. Aquac. Nutr., 17: 317–325. Gouveia A., Oliva Teles A., Gomes E., Rema P. (1993). Effect of cookingexpansion of three legume seeds on growth and food utilization by rainbow trout. Colloques de l’INRA,
- Gupta S., Kapoor M., Sharma K.K., Nair L.M., Kuhad R.C. (2008). Production and recovery of an alkaline exo-polygalacturonase from Bacillus subtilis RCK under solid-state fermentation using statistical approach. Biores. Technol., 99: 937–945.
- Handa C.L., de Lima F.S., Guelfi M.F.G., Fernandes M.S., Georgetti S.R., Ida E.I. (2019). Parameters of the fermentation of soybean flour by Monascus purpureus or Aspergillus oryzae on the production of bioactive compounds and antioxidant activity. Food. Chem., 271: 274–283.
- Hassaan M.S., Magdy A.S., Ahmed M. Abdel-Moez (2015). Nutritive value of soybean meal after solid state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Anim. Feed. Sci. Technol., 201: 89–98.
- Hassaan M.S., Soltanb M.A., Mohammadya E.Y., Elashryb M.A., El-Haroun E.R., Davies S.J. (2018). Growth and physiological responses of Nile tilapia, Oreochromis niloticus fed dietary fermented sunflower meal inoculated with Saccharomyces cerevisiae and Bacillus subtilis. Aquaculture, 495: 592–601.
- Hauptman B.S., Barrows F.T., Block S.S., Gaylord T.G., Paterson J.A., Rawles S.D., Sealey W.M. (2014). Evaluation of grain distillers dried yeast as a fish meal substitute in practical-type diets of juvenile rainbow trout, Oncorhynchus mykiss. Aquaculture, 432: 7–14.
- Hernández A.J., Roman D. (2012). Phosphorus and nitrogen utilization efficiency in rainbow trout (Oncorhynchus mykiss) fed diets with lupin (Lupinus albus) or soybean (Glycine max) meals as partial replacements to fish meal. Czech J. Anim. Sci., 61: 67–74.
- Heseltine C.W. (1983). The future of fermented foods. Nutr. Rev., 41: 293–301.
- Ilham I., Fitriska H., Fotedar R. (2018). Growth, enzymatic glutathione peroxidase activity and biochemical status of juvenile barramundi (Lates calcarifer) fed dietary fermented lupin meal supplemented with organic selenium. Aquac. Res., 49: 151–164.
- Inoue H., Yano S., Sawayama S. (2015). Effect of beta-mannanase and beta- mannosidase supplementation on the total hydrolysis of softwood polysaccharides by the Talaromyces cellulolyticus cellulase system. Applied. Biochem. Biotec., 176: 1673–1686.
- Jannathulla R., Dayal J.S., Vasanthakumar D., Ambasankar K., Muralidhar M. (2018). Effect of fungal fermentation on apparent digestibility coefficient for dry matter, crude protein, and amino acids of various plant protein sources in Penaeus vannamei. Aquac. Nutr., 24: 1318–1329.
- Kaprasob R., Kerdchoechuen O., Laohakunjit N., Sarkar D., Shetty K. (2017). Fermentation- based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria. Process. Biochem., 59: 141–149.
- Kokou F., Rigos G., Henry M., Kentouri M., Alexis M. (2012). Growth performance, feed utilization and non-specific immune response of gilthead sea bream (Sparus aurata L.) fed graded levels of a bioprocessed soybean meal. Aquaculture, 364: 74–81.
- Kumar V., Sinha A.K., Makkar H.P.S., De Boeck G., Becker K. (2012). Phytate and phytase in fish nutrition. J. Anim. Phys. Anim. Nutr., 96: 335–364.
- Laerke H.N., Arent S., Dalsgaard S., Knudsen K.E.B. (2015). Effect of xylanases on ileal viscosity, intestinal fiber modification, and apparent ileal fiber and nutrient digestibility of rye and wheat in growing pigs. J. Anim. Sci., 93: 4323–4335.
- Lee V. (2019). Food Ten Trends for 2019. https://euagenda.eu/upload/publications/untitled-209678-ea.pdf. Accessed 5 August2019.
- Lio J., Wang T. (2012). Solid-state fermentation of soybean and corn processing coproducts for potential feed improvement. J. Agric. Food. Chem., 60: 7702–7709.
- Liu H., Gong J., Chabot D., Miller S. S., Cui S. W., Ma J., Zhong F., Wang Q. (2015). Protection of heat-sensitive probiotic bacteria during spray-drying by sodium caseinate stabilized fat particles. Food. Hydroco., 51: 459–467.
- Ma Z., Hassan M.M., Allais L., He T., Leterme S., Ellis A.V., Qin J.G. (2018). Replacement of fishmeal with commercial soybean meal and Enzo Meal in juvenile barramundi Lates calcarifer. Aquac. Res., 49: 3258–3269.
- Magouz F., Mahmoud S., Moustafa M.E., El Morsy R. (2022). Effectiveness of Allzyme SSF and Polizyme® multimix feed additives on Growth Performance, Feed Utilization, and Immunological Parameters of Nile Tilapia (Oreochromis niloticus) Fingerlings. J. Helle. Vete. Med. Soc., 73: 2.
- Magro A.E.A., Laura C.S., Gabriela B.R., Ruann J.S, de Castro. (2019). solid-state fermentation as an efficient strategy for the biotransformation of lentils: enhancing their antioxidant and antidiabetic potentials. Biores. Bioproc., 6: 38.
- Mandal S., Ghosh K. (2013). Optimization of tannase production and improvement of nutritional quality of two potential low-priced plant feedstuffs under solid state fermentation by Pichia kudriavzevii isolated from fish gut. Food. Biotec., 27: 86–103.
- Mirzakhani M.K., Abedian Kenari A., Motamedzadegan A., Banavreh A. (2020). Apparent digestibility coefficients of crude protein, amino acids, crude lipid, dry matter, and gross energy of ten feedstuffs for yearling Siberian sturgeon (Acipenser baerii, Brandt 1869). Iran. J. Fisher. Sci.,19: 1500–1516.
- Nazzaro J., San Martin D., Perez-Vendrell A.M., Padrell L., Iñarra B., Orive M., Estévez A. (2021). Apparent digestibility coefficients of brewer’s byproducts used in feeds for rainbow trout (Oncorhynchus mykiss) and gilthead seabream (Sparus aurata). https://doi.org/10.1016/j.aquaculture.2020.735796
- NRC (2011). Nutrient Requirements of Fish. National Academies Press, Washington, USA. Demers, N.E., Bayne, C.J., The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Dev. Comp. Immunol., 21: 363–373.
- Olanipekun B.F., Otunola E.T., Adejuyitan J.A., Adeyanju J.A. (2012). On proximate and fatty acid composition of bambara groundnut (Voandzeia subterranean L. Thouars) a influenced by fermentation with a combination of Rhizopus oligisporous and R. Nigricans. Transnati. J. Sci. Technol., 2: 77–87.
- Omnes M.H., Silva F.C,P., Moriceau J., Aguirre P., Kaushik S., Gatesoupe F.J. (2015). Influence of lupin and rapeseed meals on the integrity of digestive tract and organs in gilthead seabream (Sparus aurata L.) and goldfish (Carassius auratus L.) juveniles. Aquac. Nutr., 21: 223–233.
- Opazo R., Ortu´zar F., Navarrete P., Espejo R., Romero J.(2012). Reduction of soybean meal non-starch polysaccharides and a-galactosides by solid-state fermentation using cellulolytic bacteria obtained from different environments. PLoS. ONE, 7: 44783.
- Petterson D.S., Sipsa S., Mackintosh J.B. (1997). The Chemical Composition and Nutritive Value of Australian Pulses. Grains Research and Development Corporation. Canber. Austral., 65 pp.
- Qiu X., Buentello A., Shannon R., Mustafa A., Abebe A., Davis D.A. (2017). Evaluation of three non-genetically modified soybean cultivars as ingredients and a yeast-based additive as a supplement in practical diets for Pacific white shrimp Litopenaeus vannamei. Aquac. Nutr., 1: 11
- Shi C., He J., Yu J., Yu J., Huang B., Mao Z.X., Zheng P.P., Chen D. (2015). Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value. J. Anim. Sci. Biotec., 6: 2–7.
- Song Y.S., Frias J., Martinez-Villaluenga C., Vidal-Valdeverde C., deMejia, E.G. (2008). Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products. Food. Chem., 108: 571–581.
- Tengku N.T., Nik N.N., Hasnan N.J., Moftah M.B., Nagao H., Mohd Omar A. (2012). Cellulase activity in solid state fermentation of palm kernel cake with Trichoderma sp. Malays. J. Micro., 8: 235–241.
- Van Vo B., Bui D.P., Nguyen H.Q., Fotedar R. (2015). Optimized fermented lupin (Lupinus angustifolius) inclusion in juvenile barramundi (Lates calcarifer) diets. Aquaculture, 444: 62–69.
- Vandenberg G.W., Scott S.L., de la Noue J. (2012). Factors affecting nutrient digestibility in rainbow trout (Oncorhynchus mykiss) fed a plant protein-based diet supplemented with microbial phytase. Aquac. Nutr., 18: 369–379.
- Vasilaki A., Petros C., Chrysanthi N., Ioannis K., Eleni F., Panagiotis A., Aikaterini K, Anna T., Dimitra K., George R., Elena M ., Ioannis N (2024). Use of solid state fermentation to improve the nutritional value of forage legumes as feed ingredients in European sea bass nutrition – in vivo evaluation EAS 2024, Copenhagen, Denmark.
- Verlhac-Trichet V., Vielma J., Dias J., Rema P., Santigosa E., Wahli T., Vogel K. (2014). The efficacy of a novel microbial 6-phytase expressed in Aspergillus oryzae on the performance and phosphorus utilization of cold- and warm-water fish: rainbow trout, Oncorhynchus mykiss, and Nile tilapia, Oreochromis niloticus. J. World. Aquac. Soc., 45: 367–379.
- Viola S., Arieli Y., Zohar G. (1988). Unusual feedstuffs (tapioca and lupin) as ingredients for carp and tilapia feeds in intensive culture. Isra. J. Aquac., 40: 29–34.
- Weiss M., Rebelein A., Slater M.J. (2020). Lupin kernel meal as fishmeal replacement in formulated feeds for the Whiteleg Shrimp (Litopenaeus vannamei). Aquac. Nutr., 26: 752–762.
- Wesley M., Björn K., Mike van‘t L., Maarten F., Davy van D., Kurt A., Paul van der H., Roy P., Davies N., Max R., Santos M.J., Simon J.D. (2019). Article The Sustainability Conundrum of Fishmeal Substitution by Plant Ingredients in Shrimp Feeds. Sustainability, 11: 1212.
- Yadava P.K., Niranjan P.S., Udebeyir S.K., Verma D.N. (2009). Performance of broiler chicken as affected by varying levels of multi enzyme supplementation. Anim. Nutr. Feed. Technol., 9: 103–109.
- Yaghoubi M., Mozanzadeh M.T., Marammazi J.G., Safari O., Gisbert E. (2016). Dietary replacement of fish meal by soy products (soybean meal and isolated soy protein) in silvery-black porgy juveniles (Sparidentex hasta). Aquaculture, 464: 50–59.
- Zhang Y., Øverland M., Xie S., Dong Z., Lv Z., Xu J., Storebakken T. (2012). Mixtures of lupin and pea protein concentrates can efficiently replace high-quality fish meal in extruded diets for juvenile black sea bream (Acanthopagrus schlegeli). Aquaculture, 354: 355.
- Zhang Y., Wu Y., Jiang D., Qin J., Wang Y. (2014). Gamma-irradiated soybean meal replaced more fish meal in the diets of Japanese seabass (Lateolabrax japonicus). Anim. Feed. Sci. Technol., 197: 155–163.
- Zheng C.Z., Wu J.W., Jin Z.H., Ye Z.F., Yang S., Sun Y.Q., Fei H. (2019). Exogenous enzymes as functional additives in finfish aquaculture. Aquac. Nutr., https://doi.org/10.1111/anu.12995