Have a personal or library account? Click to login
The effect of the application of diets with varied proportions of arginine and lysine on biochemical and antioxidant status in Turkeys Cover

The effect of the application of diets with varied proportions of arginine and lysine on biochemical and antioxidant status in Turkeys

Open Access
|Jul 2022

References

  1. Alagawany M., Elnesr S.S., Farag M.R., Tiwari R., Yatoo M.I., Karthik K., Michalak I., Dhama K. (2020). Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health – a comprehensive review. Vet. Q., 41: 1–29.
  2. Atakisi O., Atakisi E., Kart A. (2009). Effects of dietary zinc and L-arginine supplementation on total antioxidants capacity, lipid peroxidation, nitric oxide, egg weight and blood biochemical values in Japanese quails. Biol. Trace Elem. Res., 132: 136–143.
  3. British United Turkeys (BUT) (2013). Aviagen Turkeys. Management guidelines for raising commercial turkeys. Retrieved from https://www.aviagenturkeys.com/media/183481/aviagencommercialguide.pdf. Accessed October, 2013.
  4. Bulbul T., Bozkurt Z., Ulutas E., Yilmaz O., Bulbul A. (2013). The effect of L-Arginine on growth performance, some serum bio-chemical parameters and duodenal motility in broilers. Kafkas. Univ. Vet. Fak. Derg., 19: 821–827.
  5. Chamruspollert M., Pesti G.M., Bakalli R.I. (2002). Dietary interrelationships among arginine, methionine and lysine in young broiler chicks. Brit. J. Nutr., 88: 655–660.
  6. Civitelli R., Villareal D.T., Agnusdei D., Nardi P., Avioli L.V., Gennari C. (1992). Dietary L-lysine and calcium metabolism in humans. Nutrition., 8: 400–405.
  7. Ebrahimi M., Zare Shahneh A., Shivazad M., Ansari Pirsaraei Z., Tebianian M., Ruiz-Feria C.A., Adibmoradi M., Nourijelyani K., Mohamadnejad F. (2014). The effect of feeding excess arginine on lipogenic gene expression and growth performance in broilers. Brit. Poultry Sci., 55: 81–88.
  8. Fico M.E., Hassan A.S., Milner J.A. (1982). The influence of excess lysine on urea cycle operation and pyrimidine biosynthesis. J. Nutr., 112: 1854–1861.
  9. Fouad A., El-Senousey H., Yang X., Yao J. (2013). Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal, 7: 1239–1245.
  10. Ghoreyshi S.M., Omri B., Chalghoumi R., Bouyeh M., Seidavi A., Dadashbeiki M., Lucarini M., Durazzo A., van den Hoven R., Santini A. (2019). Effects of dietary supplementation of L-Carnitine and excess lysine-methionine on growth performance, carcass characteristics, and immunity markers of broiler chicken. Animals (Basel), 9: 362.
  11. Golzar Adabi S.H., Cooper R.G., Ceylan N., Corduk M. (2011). L-carnitine and its functional effects in poultry nutrition. World’s Poultry Sci. J., 67: 277–296.
  12. Handique B., Saikia G., Dowarah R., Saikia B.N., Tamuly S. (2019). Effect of supplementation of synthetic lysine and methionine on serum biochemical profile, carcass characteristics and meat composition in broiler chicken. Indian J. Anim. Nutr., 36: 40–46.
  13. Hung L.T., Thu Lan L.T., Phong N.H., Hong Nhan N.T., Ngu N.T. (2020). Effects of lysine supplementation on growth of Noi broilers. Livest. Res. Rural., 32: 53.
  14. Ishii T., Shibata K., Kai S., Noguchi K., Omar Hendawy A., Fujimura S., Sato K. (2019). Dietary supplementation with lysine and threonine modulates the performance and plasma metabolites of broiler chicken. J. Poultry Sci., 56: 204–211.
  15. Jankowski J., Mikulski D., Mikulska M., Ognik K., Całyniuk Z., Mróz E., Zduńczyk Z. (2020 a). The effect of different dietary ratios of arginine, methionine, and lysine on the performance, carcass traits, and immune status of turkeys. Poultry Sci., 99: 1028–1037.10.1016/j.psj.2019.10.008758764132036960
  16. Jankowski J., Ognik K., Konieczka P., Mikulski D. (2020 b). Effect of different level of arginine and methionine in a high-lysine diet on the immune status, performance and carcass traits of turkeys. Poultry Sci., 99: 4730–4740.10.1016/j.psj.2020.06.039759810832988507
  17. Jia H., He T., Yu H., Zeng X., Zhang S., Ma W., Zhang J., Qiao S., Ma X. (2019). Effects of L-lysine·H2SO4 product on the intestinal morphology and liver pathology using broiler model. J. Anim. Sci. Biotechnol., 10: 10.
  18. Khajali F., Wideman R.F. (2010). Dietary arginine: metabolic, environmental, immunological and physiological interrelationships. World’s Poultry Sci. J., 66: 751–766.
  19. Khatun M.J., Loh T.C., Foo H.L., Khan M.K.I. (2018). Role of amino acid arginine for broiler production: a review. J. Eng. Sci., 2: 01–06.
  20. Konieczka P., Mikulski D., Ognik K., Juśkiewicz J., Zduńczyk Z., Jankowski J. (2021). Increased dietary inclusion levels of lysine are more effective than arginine in supporting the functional status of the gut in growing turkeys. Animals, 11: 2351.
  21. Kwo Y., Cohen S.M., Lim J.K. (2017). ACG Clinical guideline: Evaluation of abnormal liver chemistries. Am. J. Gastroenterol., 112: 18–35.
  22. Liao S.F., Wang T., Regmi N. (2015). Lysine nutrition in swine and the related monogastric animals: muscle protein biosynthesis and beyond. Springerplus, 4: 147.
  23. Lin H.Y., Chen C.C., Chen Y.J., Lin Y.Y., Mersmann H.J., Ding S.T. (2014). Enhanced amelioration of high-fat diet-induced fatty liver by docosahexaenoic acid and lysine supplementations. Biomed. Res. Int., 1–11.10.1155/2014/310981405563724967351
  24. Maroufyan E., Kasim A., Hashemi S.R., Loh T.C., Bejo M.H. (2010). Change in growth performance and liver function enzymes of broiler chickens challenged with infectious bursal disease virus to dietary supplementation of methionine and threonine. Am. J. Anim. Vet. Sci., 5: 20–26.
  25. Miller A., Jedrzejczak W.W. (2001). Albumin – biological functions and clinical significance (in Polish). Postepy Hig. Med. Dosw., 55: 17–36.
  26. Nasr J., Kheiri F. (2011). Effect of different lysine levels on Arian broiler performances. Ital. J. Anim. Sci., 10: e32.
  27. NRC (1994). Nutritional Requirements of Poultry. 9th rev. ed. Natl. Acad. Press, Washington.
  28. Ognik K., Wertelecki T. (2012). Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. J. Appl. Poult. Res., 21: 259–271.
  29. Ognik K., Konieczka P., Mikulski D., Jankowski J. (2020). The effect of different dietary ratios of lysine and arginine in diets with high or low methionine levels on oxidative and epigenetic DNA damage, the gene expression of tight junction proteins and selected metabolic parameters in Clostridium perfringens-challenged turkeys. Vet. Res., 51: 50.
  30. Ognik K., Calyniuk Z., Mikulski D., Stepniowska A., Konieczka P., Jankowski J. (2021 a). The effect of different dietary ratios of lysine, arginine and methionine on biochemical parameters and hormone secretion in turkeys. J. Anim. Physiol. Anim. Nutr. (Berl.), 150: 108–118.10.1111/jpn.1343332815585
  31. Ognik K., Mikulski D., Konieczka P., Tykałowski B., Krauze M., Stępniowska A., Nynca A., Jankowski J. (2021 b). The immune status, oxidative and epigenetic changes in tissues of turkeys fed diets with different ratios of arginine and lysine. Sci. Rep., 11: 15975.10.1038/s41598-021-95529-y834241534354153
  32. Ojediran T.K., Ojeniyi O., Ajayi A.F., Emiola I.A. (2018). Effect of varying dietary lysine on growth performance, nutrient digestibility, organ weight and carcass characteristics of broiler chickens. Nigerian J. Anim. Sci., 20: 432–439.
  33. Oso A.O., Williams G.A., Oluwatosin O.O., Bamgbose A.M., Adebayo A.O., Olowofeso O., Pirgozliev V., Adegbenjo A.A., Osho S.O., Alabi J.O., Li F., Liu H., Yao K., Xin W. (2017). Effect of dietary supplementation with arginine on haematological indices, serum chemistry, carcass yield, gut microflora, and lymphoid organs of growing turkeys. Livest. Sci., 198: 58–64.
  34. Ozsoy Y., Ozsoy M., Coskun T., Namlı K., Var A., Özyurt B. (2011). The effects of L-arginine on liver damage in experimental acute cholestasis an immunohistochemical study. HPB Surgery, 1–5.10.1155/2011/306069313248921760660
  35. Rezende M., Mundim A., Fonseca B., Miranda R., Oliveira Jr W., Lellis C. (2017). Profile of serum metabolites and proteins of broiler breeders in rearing age. Rev. Bras. Cienc. Avic., 19: 583–586.
  36. Ruan D., Fouad A.M., Zhang Y.N., Wang S., Chen W., Xia W.G., Jiang S.Q., Yang L., Zheng C.T. (2019). Effects of dietary lysine on productivity, reproductive performance, protein and lipid metabolism-related gene expression in laying duck breeders. Poultry Sci., 98: 5734–5745.
  37. Silva L., Murakami A., Fernandes J., Dalla Rosa D., Urgnani J. (2012). Effects of dietary arginine supplementation on broiler breeder egg production and hatchability. Rev. Bras. Cienc. Avic., 14: 267–273.
  38. Sirathonpong O., Ruangpanit Y., Songserm O., Koo E.J., Attamangkune S. (2019). Determination of the optimum arginine: lysine ratio in broiler diets. Anim. Prod. Sci., 59: 1705–1710.
  39. Stępnik M. (2001). Molecular aspects of toxic effects of nitric oxide (in Polish). Med. Pr., 52: 375–381.
  40. Urdaneta-Rincon M., Leeson S. (2004). Effect of dietary crude protein and lysine on feather growth in chicks to twenty-one days of age. Poultry Sci., 83: 1713–1717.
  41. Wang B., Ishihara M., Egashira Y., Ohta T., Sanada H. (1999). Effects of various kinds of dietary amino acids on the hepatotoxic action of d-galactosamine in rats. Biosci. Biotechnol. Biochem., 63: 319–322.
  42. Wu G., Morris Jr S.M. (1998). Arginine metabolism: nitric oxide and beyond. Biochem. J., 336: 1–17.
  43. Xu Y.Q., Guo Y.W., Shi B.L., Yan S.M., Guo X.Y. (2018). Dietary arginine supplementation enhances the growth performance and immune status of broiler chickens. Livest. Sci., 209: 8–13.
  44. Yang H., Ju X., Wang Z., Yang Z., Lu J., Wang W. (2016). Effects of arginine supplementation on organ development, egg quality, serum biochemical parameters, and immune status of laying hens. Rev. Bras. Cienc. Avic., 18: 181–186.
  45. Zampiga M., Laghi L., Petracci M., Zhu C., Meluzzi A., Dridi S., Sirri F. (2018). Effect of dietary arginine to lysine ratios on productive performance, meat quality, plasma and muscle metabolomics profile in fast-growing broiler chickens. J. Anim. Sci. Biotechnol., 9: 79.
  46. Zarghi H., Golian A., Yazdi FT. (2020). Effect of dietary sulphur amino acid levels and guanidinoacetic acid supplementation on performance, carcase yield and energetic molecular metabolites in broiler chickens fed wheat-soy diet. Ital. J. Anim. Sci., 19: 951–959.
DOI: https://doi.org/10.2478/aoas-2021-0081 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1041 - 1055
Submitted on: May 26, 2021
Accepted on: Oct 6, 2021
Published on: Jul 19, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Zuzanna Całyniuk, Ewelina Cholewińska, Paweł Konieczka, Katarzyna Ognik, Dariusz Mikulski, Jan Jankowski, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.