References
- Abd El Tawab A. M., Kholif A. E., Hassan A. M., Matloup O. H., Abo El-Nor S. A., Olafadehan O. A., Khattab M. S. A. (2020). Feed utilization and lactational performance of Friesian cows fed beet tops silage treated with lactic acid bacteria as a replacement for corn silage. Anim. Biotechnol., 31: 473–482.
- Abedi E., Sahari M. A. (2014). Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr., 2: 443–463.
- Aboul-Fotouh G. E., El-Garh G. M., Azzaz H. H., Abd El-Mola A. M., Mousa G. A. (2016). Fungal cellulase production optimization and its utilization in goat’s rations degradation. Asian J. Anim. Vet. Adv., 1: 824–831.
- Alnaimy A. (2017). Using of citrus by-products in farm animals feeding. Open Access J. Sci., 1: 57–68.
- Alsersy H., Salem A.Z.M., Borhami B.E., Olivares J., Gado H.M., Mariezcurrena M.D., Yacuot M. H., Kholif A. E., El-Adawy M., Hernandez S. R. (2015). Effect of Mediterranean saltbush (Atriplex halimus) ensilaging with two developed enzyme cocktails on feed intake, nutrient digestibility and ruminal fermentation in sheep. Anim. Sci. J., 86: 51–58.
- Amin F., Bhatti H. N., Bilal M. (2019). Recent advances in the production strategies of microbial pectinases – A review. Int. J. Biol. Macromol., 122: 1017–1026.
- AOAC (1997). Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Washington, DC, USA.
- Azzaz H.H., Murad H.A., Kholif A.M., Morsy T.A., Mansour A.M., El-Sayed H.M. (2013). Increasing nutrients bioavailability by using fibrolytic enzymes in dairy buffaloes feeding. J. Biol. Sci., 13: 234–241.
- Azzaz H. H., Aboamer A. A., Alzahar H., Abdo M. M., Murad H. A. (2019). Effect of xylanase and phytase supplementation on goat’s performance in early lactation. Pakistan J. Biol. Sci., 22: 265–272.
- Azzaz H. H., Aboamer A. A., Alzahar H., Hassaan N. A., Murad H.A. (2020 a). Effect of cellulases supplementation on milk yield and feed utilization by Baladi goats in early lactation. Int. J. Dairy Sci. 15, 48–53.10.3923/ijds.2020.48.53
- Azzaz H. H., Murad H. A., Hassaan N. A., Fahmy M. (2020 b). Pectinase production optimization for improving dairy animal’s diets degradation. Int. J. Dairy Sci., 15: 54–61.10.3923/ijds.2020.54.61
- Beauchemin K.A., Colombatto D., Morgavi D.P., Yang W.Z., Rode L.M. (2004). Mode of action of exogenous cell wall degrading enzymes for ruminants. Can. J. Anim. Sci., 84: 13–22.
- Boyd J. W. (1984). The interpretation of serum biochemistry test results in domestic animals. Vet. Clin. Pathol., 13: 7–14.
- Buga M. L., Ibrahim S., Nok A. J. (2010). Partially purified polygalacturonase from Aspergillus niger (SA6). African J. Biotechnol., 9: 8944–8954.
- Castillo-González A.R., Burrola-Barraza M.E., Domínguez-Viveros J., Chávez-Martínez A. (2014). Rumen microorganisms and fermentation. Arch. Med. Vet., 46: 349–361.
- Corl B.A., Baumgard L.H., Dwyer D.A., Griinari J.M., Phillips B.S., Bauman D.E. (2001). The role of Δ9-desaturase in the production of cis-9, trans-11 CLA. J. Nutr. Biochem. 12: 622–630.
- Elghandour M.M.Y., Kholif A.E., Hernández J., Mariezcurrena M.D., López S., Camacho L. M., Márquez O., Salem A. Z. M. (2016). Influence of the addition of exogenous xylanase with or without pre-incubation on the in vitro ruminal fermentation of three fibrous feeds. Czech J. Anim. Sci., 61: 262–272.
- Ferret A., Plaixats J., Caja G., Gasa J., Prió P. (1999). Using markers to estimate apparent dry matter digestibility, faecal output and dry matter intake in dairy ewes fed Italian ryegrass hay or alfalfa hay. Small Rumin. Res., 33: 145–152.
- Fredeen A. H. (1996). Considerations in the nutritional modification of milk composition. Anim. Feed Sci. Technol., 59: 185–197.
- Gaines W. L. (1928). The energy basis of measuring milk yield in dairy cows. Illinois Agric. Exp. Stn. Bull., pp. 403–438.
- Giraldo L. A., Tejido M. L., Ranilla M. J., Ramos S., Carro M. D. (2008). Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet. J. Anim. Sci., 86: 1617–1623.
- Khattab H. M., Gado H. M., Salem A. Z. M., Camacho L. M., El-Sayed M. M., Kho-lif A. M., El-Shewy A. A., Kholif A. E. (2013). Chemical composition and in vitro digestibility of Pleurotus ostreatus spent rice straw. Anim. Nutr. Feed Technol., 13: 507–516.
- Kholif A.E., Khattab H.M., El-Shewy A.A., Salem A.Z.M., Kholif A.M., El-Sa-yed M. M., Gado H. M., Mariezcurrena M. D. (2014). Nutrient digestibility, ruminal fermentation activities, serum parameters and milk production and composition of lactating goats fed diets containing rice straw treated with Pleurotus ostreatus. Asian-Australas. J. Anim. Sci., 27: 357–364.
- Kholif A. E., Abdo M. M., Anele U. Y., El-Sayed M. M., Morsy T.A. (2017 a). Saccharomyces cerevisiae does not work synergistically with exogenous enzymes to enhance feed utilization, ruminal fermentation and lactational performance of Nubian goats. Livest. Sci., 206: 17–23.10.1016/j.livsci.2017.10.002
- Kholif A.E., Elghandour M.M.Y., Rodríguez G.B., Olafadehan O.A., Salem A.Z.M. (2017 b). Anaerobic ensiling of raw agricultural waste with a fibrolytic enzyme cocktail as a cleaner and sustainable biological product. J. Clean. Prod., 142: 2649–2655.10.1016/j.jclepro.2016.11.012
- Kholif A.E., Morsy T.A., Matloup O.H., Anele U.Y., Mohamed A.G., El-Sayed A.B. (2017 c). Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats. J. Agric. Sci., 155: 508–518.10.1017/S0021859616000824
- Kholif A. E., Gouda G. A., Olafadehan O. A., Abdo M.M. (2018 a). Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile. Animal, 12: 964–972.10.1017/S175173111700233628988560
- Kholif A. E., Kassab A. Y., Azzaz H. H., Matloup O. H., Hamdon H. A., Olafade-han O. A., Morsy T. A. (2018 b). Essential oils blend with a newly developed enzyme cocktail works synergistically to enhance feed utilization and milk production of Farafra ewes in the subtropics. Small Rumin. Res., 161: 43–50.10.1016/j.smallrumres.2018.02.011
- Kholif A. E., Gouda G. A., Galyean M. L., Anele U. Y., Morsy T. A. (2019). Extract of Moringa oleifera leaves increases milk production and enhances milk fatty acid profile of Nubian goats. Agrofor. Syst., 93: 1877–1886.
- Kim Y. J., Ki W. L., Hyong J. L. (2003). Increase of conjugated linoleic acid level in milk fat by bovine feeding regimen and urea fractionation. J. Microbiol. Biotechnol., 13: 22–28.
- Knowlton K. F. F., Mc Kinney J. M. M., Cobb C. (2002). Effect of a direct-fed fibrolytic enzyme formulation on nutrient intake, partitioning, and excretion in early and late lactation Holstein cows. J. Dairy Sci., 85: 3328–3335.
- Morsy T. A., Kholif A. E., Kholif S. M., Kholif A. M., Sun X., Salem A. Z. M. (2016). Effects of two enzyme feed additives on digestion and milk production in lactating Egyptian buffaloes. Ann. Anim. Sci., 16: 209–222.
- Murad H. A., Azzaz H. H. (2011). Microbial pectinases and ruminant nutrition. Res. J. Microbiol., 6: 246–269.
- NRC (2007). Nutrient Requirements for Sheep, Goats, Cervids, and New World Camelids. National Academy Press, Washington, DC, USA.
- NRC (2001). Nutrient Requirements of Dairy Cattle, 7th ed. National Academies Press, Washington, D.C., USA.
- Olafadehan O.A., Okunade S.A., Njidda A.A., Kholif A.E., Kolo S.G., Alagbe J.O. (2020). Concentrate replacement with Daniellia oliveri foliage in goat diets. Trop. Anim. Health Prod., 2: 227–233.
- Palmquist D. L. (2006). Milk Fat: Origin of Fatty Acids and Influence of Nutritional Factors Thereon. In: Advanced Dairy Chemistry, Fox P.F., McSweeney P.L.H. (eds). Volume 2 Lipids. Springer US, Boston, MA, pp. 43–92.10.1007/0-387-28813-9_2
- Pettersson J., Hindorf U., Persson P., Bengtsson T., Malmqvist U., Werks-tröm V., Ekelund M. (2008). Muscular exercise can cause highly pathological liver function tests in healthy men. Br. J. Clin. Pharmacol., 65: 253–259.
- Rojo R., Kholif A. E., Salem A. Z. M., Elghandour M. M. Y., Odongo N. E., Montesde Oca R., Rivero N., Alonso M. U. (2015). Influence of cellulase addition to dairy goat diets on digestion and fermentation, milk production and fatty acid content. J. Agric. Sci., 153: 1514–1523.
- Salem A. Z. M., Alsersy H., Camacho L. M., El-Adawy M. M., Elghandour M. M. Y., Kholif A. E., Rivero N., Alonso M. U., Zaragoza A. (2016). Feed intake, nutrient digestibility, nitrogen utilization, and ruminal fermentation activities in sheep fed Atriplex halimus ensiled with three developed enzyme cocktails. Czech J. Anim. Sci., 60: 185–194.
- Sales J., Janssens G. (2003). Acid-insoluble ash as a marker in digestibility studies: a review. J. Anim. Feed Sci., 12: 383–401.
- Shelukhina N. P., Fedichkina L. G. (1994). A rapid method for quantitative determination of pectic substances. Acta Bot. Neerl., 43: 205–207.
- Sjaunja L.O., Baevre L., Junkkarinen L., Pedersen J., Setala J. (1991). A Nordic proposal for an energy corrected milk (ECM) formula: performance recording of animals. State of the art. EAAP Publ., 50: 156–157.
- Togtokhbayar N., Cerrillo M.A., Rodríguez G.B., Elghandour M.M.Y., Salem A.Z.M., Urankhaich C., Jigjidpurev S., Odongo N.E., Kholif A.E. (2015). Effect of exogenous xylanase on rumen in vitro gas production and degradability of wheat straw. Anim. Sci. J., 86: 765–771.
- Tyrrell H. F., Reid J. T. (1965). Prediction of the energy value of cow’s milk. J. Dairy Sci., 48: 1215–1223.
- Ulbricht T. L. V., Southgate D. A. T. (1991). Coronary heart disease: seven dietary factors. Lancet, 338: 985–992.
- Vallejo L. H., Salem A. Z. M., Kholif A. E., Elghangour M. M. Y., Fajardo R. C., Rive-ro N., Bastida A. Z., Mariezcurrena M. D. (2016). Influence of cellulase or xylanase on the in vitro rumen gas production and fermentation of corn stover. Indian J. Anim. Sci., 86: 70–74.
- Van Soest P. J., Robertson J. B., Lewis B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583–3597.