Have a personal or library account? Click to login
Effect of Hybrid Rye and Maize Grain Processing on Ruminal and Postruminal Digestibility Parameters Cover

Effect of Hybrid Rye and Maize Grain Processing on Ruminal and Postruminal Digestibility Parameters

Open Access
|Aug 2020

References

  1. AACC (2011). International approved methods of analysis. 11th Ed. St. Paul, MN, USA. Andersson A.A.M., Dimberg L., Åman P., Landberg R. (2014). Recent findings on certain bioactive components in whole grain wheat and rye. J. Cereal Sci., 59: 294–311.10.1016/j.jcs.2014.01.003
  2. AOAC (2005). Association of official analytical chemists. Official methods of analysis. 18th ed. AOAC International, Washington, DC.
  3. Araujo R.C., Piresa A.V., Mourãoa G.B., Abdallab A.L., Sallamc S.M.A. (2011). Use of blanks to determine in vitro net gas and methane production when using rumen fermentation modifiers. Anim. Feed Sci. Tech., 166–167: 155–162.10.1016/j.anifeedsci.2011.04.009
  4. Benninghoff J., Paschke-Beese M., Südekum K.H. (2015). In situ and in vitro ruminal degradation of maize grain and untreated or xylose-treated wheat, barley and rye grains. Anim. Feed Sci. Tech., 210: 86–93.10.1016/j.anifeedsci.2015.10.002
  5. Bertipaglia L.M.A., Fondevila M., van Laar H., Castrillo C. (2010). Effect of pelleting and pellet size of a concentrate for intensively reared beef cattle on in vitro fermentation by two different approaches. Anim. Feed Sci. Tech., 159: 88–95.10.1016/j.anifeedsci.2010.05.010
  6. Crowe T.C., Seligman S.A., Copeland L. (2000). Inhibition of enzymic digestion of amylose by free fatty acids in vitro contributes to resistant starch formation. J. Nutr., 130: 2006–2008.10.1093/jn/130.8.2006
  7. Englyst H.N., Cummings J.H. (1984). Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst, 109: 937–942.10.1039/an9840900937
  8. Faisant N., Planchot V., Kozlowski F., Pacourent M.P., Colonna P., Champ M. (1995). Resistant starch of determination adapted to products containing high level of resistant starch. Sci. Alim., 15: 83–89.
  9. Goering H.K., Van Soest P.J. (1970). Forage fibre analysis. In: Agricultural Handbook No. 379. Agricultural Research service, USDA, Washington, DC, 20 pp.
  10. Grajewski J., Błajet-Kosicka A., Twarużek M., Kosicki R. (2012). Occurrence of mycotoxins in Polish animal feed in years 2006–2009. J. Anim. Physiol. Anim. Nutr., 95: 870–877.10.1111/j.1439-0396.2012.01280.x
  11. Hoseney R.C. (1994). Principles of cereal science and technology. American Association of Cereal Chemists, St. Paul, USA.
  12. Knowlton K.F., Glenn B.P., Erdman R.A. (1998). Performance, ruminal fermentation, and site of starch digestion in early lactation cows fed corn grain harvested and processed differently. J. Dairy Sci., 81: 1972–1984.10.3168/jds.S0022-0302(98)75771-6
  13. Kowalski Z.M., Pisulewski P.M.P., Peyraud J-L., Kamiński J. (1995). The effect of drier outflow temperature on rumen protein degradability and intestinal digestibility of rumen-undegraded protein of dehydrated grass and lucerne. Ann. Zootech., 44 (suppl.1): 88.10.1051/animres:19950558
  14. Krieg J., Seifried N., Steingass H., Rodehutscord M. (2017). In situ and in vitro ruminal starch degradation of grains from different rye, triticale and barley genotypes. Animal, 11 (10): 1745–1753.10.1017/S1751731117000337
  15. McAllister T.A., Phillippe C., Rode L.M., Cheng K.J. (1993). Effect of the protein matrix on the digestion of cereal grains by ruminal microorganisms. J. Anim. Sci., 71: 205–212.10.2527/1993.711205x
  16. Mabjeesh S.J., Cohen M., Arieli A. (2000). In vitro methods for measuring the dry matter digestibility of ruminant feedstuffs: Comparison of methods and inoculum source. J. Dairy Sci., 83: 2289–2294.10.3168/jds.S0022-0302(00)75115-0
  17. Menke H.H., Steingass H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Develop., 28: 7-55.
  18. Mertens D.R. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative Study. J. AOAC Int., 85 (6): 1217–1240.
  19. Micek P. (2008). Nutritional usefulness to ruminants of grain of Polish cereal species and cultivars. Scientific papers of University of Agriculture in Krakow. Habilitation thesis No 326, 1–127 (in Polish).
  20. Mills J.A.N., France J., Dijkstra J. (1999). A review of starch digestion in the lactating dairy cow and proposals for a mechanistic model. 2. Postruminal starch digestion and small intestinal glucose absorption. J. Anim. Feed Sci., 8 (4): 451–481.10.22358/jafs/69123/1999
  21. Nikokyris P.N., Kandylis K. (1997). Feed protein fractions in various solvents of ruminant feedstuffs. J. Sci. Food Agric., 75: 198–204.10.1002/(SICI)1097-0010(199710)75:2<198::AID-JSFA863>3.0.CO;2-C
  22. NRC (2001). National Research Council. Nutrient Requirements of Dairy Cattle. 7th rev. ed., National Academy Press, Washington, DC.
  23. Offner A., Sauvant D. (2004). Prediction of in vivo starch digestion in cattle from in situ data. Anim. Feed Sci. Tech., 111: 41–56.10.1016/S0377-8401(03)00216-5
  24. Owens F.N., Zinn R.A., Kim Y.K. (1986). Limits to starch digestion in the ruminant small intestine. J. Anim. Sci., 63: 1634–1648.10.2527/jas1986.6351634x
  25. Ørskov E.R. (1986). Starch digestion and utilization in ruminants. J. Anim. Sci., 63: 1624–1633.10.2527/jas1986.6351624x
  26. Ørskov E.R., McDonald P. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci., 92: 499–503.10.1017/S0021859600063048
  27. Petr J. (2005). Yield potential of rye, hybrid and population varieties in ecological and intensive cultivation. Sci. Agric. Bohem., 36 (2): 41–48.
  28. Peyraud J.L., Genest-Rulquin Ch., Verité R. (1988). Mesure de la digestion de l’azote des aliments dans l’intestin des ruminants par la technique des sachets mobiles. 1. Evaluation de la quantité de matières azotées indigestibles en sachet des principaux aliments. Reprod. Nutr. Dev., 28: 129–130.10.1051/rnd:19881139
  29. Philippeau C., Le Deschault de Monredon F., Michalet-Doreau B. (1999). Relationship between ruminal starch degradation and the physical characteristics of corn grain. J. Anim. Sci., 77: 238–243.10.2527/1999.771238x
  30. Philippeau C., Michalet-Doreau B. (1998). Influence of genotype and ensiling of corn grain on in situ degradation of starch in the rumen. J. Dairy Sci., 81: 2178–2184.10.3168/jds.S0022-0302(98)75796-0
  31. Plaizier J.C., Krause D.O., Gozho G.N., McBride B.W. (2009). Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet. J., 176: 21–31.10.1016/j.tvjl.2007.12.016
  32. Rémond D., Cabrera-Estrada J.I., Champion M., Chauveau B., Coudure R., Poncet C. (2004). Effect of corn particle size on site and extent of starch digestion in lactating dairy cows. J. Dairy Sci., 87: 1389–1399.10.3168/jds.S0022-0302(04)73288-9
  33. Robertson J.B., Van Soest P.J. (1981). The detergent system analysis and its application to human foods. In “The analysis of dietary fiber in food”, ed. by J. Theander, Dekker INC, pp 123–157.
  34. Rowe J.B., Choct M., Pethick D.W. (1999). Processing cereal grains for animal feeding. Aust. J. Agric. Res., 50 (5): 721–736.10.1071/AR98163
  35. Sauvant D. (1997). Conséquences digestives et zootechniques des variations de la vitesse de digestion de l’amidon chez les ruminants. INRA Prod. Anim., 10: 287–300.10.20870/productions-animales.1997.10.4.4003
  36. Seifried N., Steingass H., Schipprack W., Rodehutscord M. (2016). Variation in ruminal in situ degradation of crude protein and starch from maize grains compared to in vitro gas production kinetics and physical and chemical characteristics. Arch. Anim. Nutr., 70: 333–349.10.1080/1745039X.2016.1215028
  37. Svihus B., Uhlen A.K., Harstad O.M. (2005). Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim. Feed Sci. Tech., 122: 303–320.10.1016/j.anifeedsci.2005.02.025
  38. Tagliapietra F., Cattani M., Hansen H., Hindrichsen I., Bailoni L., Schiavon S. (2011). Metabolizable energy content of feeds based on 24 or 48 h in situ NDF digestibility and on in vitro 24 h gas production methods. Anim. Feed Sci. Tech., 170: 182–191.10.1016/j.anifeedsci.2011.09.008
  39. Tothi R., Lund P., Weisbjerg M.R., Hvelplund T. (2003). Effect of expander processing on fractional rate of maize and barley starch degradation in the rumen of dairy cows estimated using rumen evacuation and in situ techniques. Anim. Feed Sci. Tech., 104: 71–94.10.1016/S0377-8401(02)00292-4
  40. Wang M., Jiang J., Tan Z.L., Tang S.X., Sun Z.H., Han X.F. (2009). In situ ruminal crude protein and starch degradation of three classes of feedstuffs in goats. J. Appl. Anim. Res., 36: 23–28.10.1080/09712119.2009.9707023
  41. Woods V.B., Moloney A.P., O’Mara F.P.O. (2003). The nutritive value of concentrate feedstuffs for ruminant animals: Part II: In situ ruminal degradability of crude protein. Anim. Feed Sci. Tech., 110: 131–143.10.1016/S0377-8401(03)00222-0
DOI: https://doi.org/10.2478/aoas-2020-0025 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1065 - 1083
Submitted on: Jul 17, 2019
Accepted on: Feb 18, 2020
Published on: Aug 1, 2020
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Patrycja Rajtar, Paweł Górka, Tomasz Schwarz, Piotr Micek, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.