Have a personal or library account? Click to login
Redox and Immunological Status of Turkeys Fed Diets with Different Levels and Sources of Copper Cover

Redox and Immunological Status of Turkeys Fed Diets with Different Levels and Sources of Copper

Open Access
|Feb 2019

References

  1. Ajuwon O.R., Idowu O.M.O., Afolabi S.A., Kehinde B.O., Oguntola O.O., Olatun-bosun K.O. (2011). The effects of dietary copper supplementation on oxidative and antioxidant systems in broiler chickens. Arch. Zootec., 60: 275–282.10.4321/S0004-05922011000200012
  2. Albanese A., Tang P.S., Chan W.C.W. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 14: 1–16.10.1146/annurev-bioeng-071811-150124
  3. Amstad P., Moret R., Cerutti P. (1994). Glutathione peroxidase compensates for the hypersensitivity of Cu, Zn-superoxide dismutase overproducers to oxidant stress. J. Biol. Chem., 269: 1606–1609.10.1016/S0021-9258(17)42068-0
  4. Bao Y.M., Choct M., Iji P., Bruerton A. (2007). Effect of organically complexed copper, iron, manganese and zinc on broiler performance, mineral excretion and accumulation in tissues. J. Appl. Poultry Res., 16: 448–455.10.1093/japr/16.3.448
  5. Bunglavan S.J., Dass A.K.G., Shrivastava S. (2014). Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livestock Res. Int., 2: 36–47.
  6. Dinant H.J., Dijkmans B.A.C. (1999). New therapeutic targets for rheumatoid arthritis. Pharm. World Sci., 21: 49–59.10.1023/A:1008661630718
  7. EFSA, Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). (2016). Revision of the currently authorised maximum copper content in complete feed. EFSA J., 14: 4563.10.2903/j.efsa.2016.4563
  8. El Sabry M.I., Mc Millin K.W., Sabliov C.M. (2018). Nanotechnology considerations for poultry and livestock production systems – a review. Ann. Anim. Sci., 18: 319–334.10.1515/aoas-2017-0047
  9. Freedman J.H., Wolterbeek H.T. (1989). The role of glutathione in copper metabolism and toxicity. J. Biol. Chem., 264: 5590–5605.10.1016/S0021-9258(18)83589-X
  10. Hill E.K., Li J. (2017). Current and future prospects for nanotechnology in animal production. J. Anim. Sci. Biotechnol., 8: 26.10.1186/s40104-017-0157-5
  11. Hussain N., Jaitley V., Florence A.T. (2001). Recent advances in the understanding of uptake of microparticles across the gastrointestinal lymphatics. Adv. Drug Deliv. Rev., 50: 107–142.10.1016/S0169-409X(01)00152-1
  12. Hybrid Turkeys (2013). Nutrient Guidelines. http://resources.hybridturkeys.com/nutrition/commercial-guidelines (accessed 09.07.2018).
  13. Kim J.W., Chao P.Y., Allen A. (1992). Inhibition of elevated hepatic glutathione abolishes copper deficiency cholesterolemia. FASEB J., 6: 2467–2471.10.1096/fasebj.6.7.1563598
  14. Klasing K.C. (1998). Nutritional modulation of resistance to infectious diseases. Poultry Sci., 77: 1119–1125.10.1093/ps/77.8.1119
  15. Maheshwari S. (2013). Environmental impacts of poultry production. Poult. Fish Wildl. Sci., 1: 101–103.10.4172/pfw.1000101
  16. Majewski M., Ognik K., Zduńczyk P., Juśkiewicz J. (2017). Effect of dietary copper nanoparticles versus one copper (II) salt: analysis of vasoreactivity in a rat model. Pharmacol. Rep., 69: 1282–1288.10.1016/j.pharep.2017.06.001
  17. Makarski B., Gortat M., Lechowski J.,Żukiewicz-Sobczak W., Sobczak P., Zawiślak K. (2014). Impact of copper (Cu) at the dose of 50 mg on haematological and biochemical blood parameters in turkeys, and level of Cu accumulation in the selected tissues as a source of information on product safety for consumers. Ann. Agric. Environ. Med., 21: 567–570.10.5604/12321966.1120603
  18. Malavolta M., Piacenza F., Basso A., Giacconi R., Costarelli L., Mocchegia-ni E. (2015). Serum copper to zinc ratio: relationship with aging and health status. Mech. Ageing. Dev., 151: 93–100.10.1016/j.mad.2015.01.004
  19. Mc Cord J.M. (1983). The superoxide free radical: its biochemistry and pathophysiology. Surgery, 94: 412–414.10.1016/0022-2860(83)90301-0
  20. Mikulski D., Jankowski J., Zduńczyk Z., Wróblewska M., Mikulska M. (2009). Copper balance, bone mineralization and the growth performance of turkeys fed diet with two types of Cu supplements. J. Anim. Feed Sci., 18: 677–688.10.22358/jafs/66441/2009
  21. Nollet L., Huyghebaert G., Spring P. (2008). Effect of different levels of dietary organic (Biolpex) trace minerals on live performance of broiler chickens by growth phases. J. Appl. Poultry Res., 17: 109–115.10.3382/japr.2007-00049
  22. NRC (1994). Nutrient Requirements of Poultry. 9th rev. ed. Natl. Acad. Press, Washington, DC.
  23. Ognik K., Wertelecki T. (2012). Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. J. Appl. Poultry Res., 2: 259–271.10.3382/japr.2011-00366
  24. Ognik K., Stępniowska A., Cholewińska E., Kozłowski K. (2016). The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poultry Sci., 95: 2045–2051.10.3382/ps/pew200
  25. Percival S.S. (1998). Copper and immunity. Am. J. Clin. Nutr., 67: 1064S–1068S.10.1093/ajcn/67.5.1064S
  26. Samanta B., Ghosh P.R., Biswas A., Das S.K. (2011). The effects of copper supplementation on the performance and hematological parameters of broiler chickens. Asian-Australas. J. Anim. Sci., 24: 1001–1006.10.5713/ajas.2011.10394
  27. Smulikowska S., Rutkowski A. (2005). Recommended Allowances and Nutritive Value of Feedstuffs – Poultry Feeding Standards (in Polish). 5th ed. Smulikowska, S., Rutkowski, A., Eds. The Kielanowski Institute of Animal Physiology and Nutrition, Jablonna, PAS, Poland.
  28. Sunderman Jr F.W., Nomoto S. (1970). Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. Clin. Chem., 16: 903–910.10.1093/clinchem/16.11.903
  29. Tomaszewska E., Muszyński S., Ognik K., Dobrowolski P., Kwiecień M., Juśkiewicz J., Chocyk D., Świetlicki M., Blicharski T., Gładyszewska B. (2017). Comparison of the effect of dietary copper nanoparticles with copper (II) salt on bone geometric and structural parameters as well as material characteristics in a rat model. J. Trace Elem. Med. Biol., 42: 103–110.10.1016/j.jtemb.2017.05.002
  30. Wang C., Wang M.Q., Ye S.S., Tao W.J., Du Y.J. (2011). Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poultry Sci., 90: 2223–2228.10.3382/ps.2011-01511
  31. Xiang-Qi Z., Zhang K.-Y., Ding X.-M., Bai S.-P. (2009). Effects of dietary supplementation with copper sulfate or tribasic copper chloride on carcass characteristics, tissular nutrients deposition and oxidation in broilers. Pakistan J. Nutr., 8: 1114–1119.10.3923/pjn.2009.1114.1119
DOI: https://doi.org/10.2478/aoas-2018-0054 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 215 - 227
Submitted on: Jul 9, 2018
Accepted on: Nov 20, 2018
Published on: Feb 1, 2019
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Jan Jankowski, Krzysztof Kozłowski, Katarzyna Ognik, Zenon Zduńczyk, Kamil Otowski, Ewa Sawosz, Jerzy Juśkiewicz, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.