Have a personal or library account? Click to login

An adaptive output feedback motion tracking controller for robot manipulators: Uniform global asymptotic stability and experimentation

Open Access
|Sep 2013

References

  1. Abdessameud, A. and Khelfi, M.F. (2006). A variable structure observer for the control of robot manipulators, InternationalJournal of Applied Mathematics and Computer Science16(2):189-196.
  2. Arimoto, S., Parra-Vega, V. and Naniwa, T. (1994). A class of linear velocity observers for nonlinear mechanical systems, Asian Control Conference, Tokyo, Japan, pp. 633-636.
  3. Arimoto, S. (1995a). Fundamental problems of robot control, Part I: Innovation in the realm of robot servo-loops, Robotica13(1): 19-27.10.1017/S0263574700017446
  4. Arimoto, S. (1995b). Fundamental problems of robot control, Part II: A nonlinear circuit theory towards an understanding of dexterous motions, Robotica 13(2): 111-122.10.1017/S0263574700017616
  5. Bańka, S., Dworak, P. and Jaroszewski, K. (2013). Linear adaptive structure for control of a nonlinear MIMO dynamic plant, International Journal of Applied Mathematicsand Computer Science 23(1): 47-63, DOI: 10.2478/amcs-2013-0005.10.2478/amcs-2013-0005
  6. Berghuis, H. and Nijmeijer, H. (1993). A passivity approach to controller-observer design for robots, IEEE Transactions onRobotics and Automation 9(6): 740-754.10.1109/70.265918
  7. Burkov, I. (1993). Asymptotic stabilization of nonlinear Lagrangian systems without measuring velocities, InternationalSymposium on Active Control in Mechanical Engineering,Lyon, France, pp. 37-41.
  8. Craig, J., Hsu, P. and Sastry, S. (1987). Adaptive control of mechanical manipulators, International Journal of RoboticsResearch 6(2): 16-28.10.1177/027836498700600202
  9. Daly, J. and Schwarz, H. (2006). Experimental results for adaptive output feedback control, Robotica 24(6): 727-738.10.1017/S0263574706002906
  10. Kelly, R. (1993). A simple set-point robot controller by using only position measurements, International Federation ofAutomatic Control World Congress, Sydney, Australia, pp. 173-176.
  11. Kelly, R., Carelli, R. and Ortega, R. (1989). Adaptive motion control design to robot manipulators: An input-output approach, International Journal of Control50(6): 2563-2581.10.1080/00207178908953515
  12. Kelly, R., Santibanez, V. and Loria, A. (2005). Control of RobotManipulators in Joint Space, Springer-Verlag, Berlin.
  13. Khalil, H. (2002). Nonlinear Systems, Prentice-Hall, Englewood Cliffs, NJ.
  14. Koditschek, D. (1984). Natural motion for robot arms, Conferenceon Decision and Control, Las Vegas, NV, USA, pp. 733-735.
  15. Lim, S., Dawson, D. and Anderson, K. (1996). Re-examining the Nicosia-Tomei robot observer-controller from a backstepping perspective, IEEE Transactions on ControlSystems Technology 4(3): 304-310.10.1109/87.491205
  16. Lopez-Araujo, D., Zavala-Rio, A., Santibanez, V. and Reyes, F. (2012). Output-feedback adaptive control for the global regulation of robot manipulators with bounded inputs, InternationalJournal of Control, Automation and Systems 11(1): 105-115.10.1007/s12555-012-9203-4
  17. Loría, A., Kelly, R. and Teel, A. (2005). Uniform parametric convergence in the adaptive control of mechanical systems, European Journal of Control 11(2): 87-100.10.3166/ejc.11.87-100
  18. Loria, A.E., Panteley, Popovic D. and Teel A. (2002). δ-Persistency of excitation: A necessary and sufficient condition for uniform attractivity. IEEE Conference on Decisionand Control, Las Vegas, NV, USA, pp. 3506-3511.10.1109/CDC.2002.1184418
  19. Loria, A. and Nijmeijer, H. (1998). Bounded output feedback tracking control of fully-actuated Euler-Lagrange systems, Systems & Control Letters 33(3): 151-161.10.1016/S0167-6911(97)80170-3
  20. Middleton, R. and Goodwin, G. (1998). Adaptive computed torque control for rigid link manipulators, Systems & ControlLetters 10(1): 9-16.10.1016/0167-6911(88)90033-3
  21. Moreno-Valenzuela, J., Santibanez, V., Orozco-Manriquez, E. and Gonzalez-Hernandez, L. (2010). Theory and experiments of global adaptive output feedback tracking control of manipulators, IET Control Theory and Applications4(9): 1639-1654.10.1049/iet-cta.2009.0249
  22. Moreno-Valenzuela, J., Santibanez, V., Campa, R. (2008a). A class of OFT controllers for torque-saturated robot manipulators: Lyapunov stability and experimental evaluation, Journal of Intelligent & Robotic Systems 51(1): 65-88.10.1007/s10846-007-9181-6
  23. Moreno-Valenzuela, J., Santibanez, V., Campa, R. (2008b). On output feedback tracking control of robots manipulators with bounded torque input, International Journal of Control,Automation, and Systems 6(1): 76-85.
  24. Nicosia, S. and Tomei, P. (1990). Robot control by using only position measurements, IEEE Transactions on AutomaticControl 35(9): 1058-1061.10.1109/9.58537
  25. Ortega, R., Loria, A. and Kelly, R. (1995). A semiglobally stable output feedback PI2D regulator for robot manipulators, IEEE Transactions on Automatic Control40(8): 1432-1436.10.1109/9.402235
  26. Ortega, R. and Spong, M. (1989). Adaptive motion control of rigid robots: A tutorial, Automatica 25(6): 877-888.10.1016/0005-1098(89)90054-X
  27. Reyes, F. and Kelly, R. (2001). Experimental evaluation of model-based controllers on a direct-drive robot arm, Mechatronics11(3): 267-282.10.1016/S0957-4158(00)00008-8
  28. Sadegh, N. and Horowitz, R. (1987). Stability analysis of an adaptive controller for robotic manipulators, InternationalConference on Robotics and Automation, Raleigh, NC, USA, pp. 1223-1229.
  29. Santibanez, V. and Kelly, R. (2001). Global asymptotical stability of bounded output feedback tracking control for robot manipulators, IEEE Conference on Decision and Control,Orlando, FL, USA, pp. 1378-1379.
  30. Santibanez, V. and Kelly, R. (1999). Global convergence of the adaptive PD controller with computed feedforward for robot manipulators, IEEE International Conference on Roboticsand Automation, Detroit, MI, USA, pp. 1831-1836.
  31. Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research6(3): 49-59.10.1177/027836498700600303
  32. Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). RobotModeling and Control, John Wiley and Sons, New York, NY.
  33. Witkowska, A. and Śmierzchalski, R. (2012). Designing a ship course controller by applying the adaptive backstepping method, International Journal of Applied Mathematicsand Computer Science 22(4): 985-997, DOI: 10.2478/v10006-012-0073-y.10.2478/v10006-012-0073-y
  34. Yarza, A., Santibanez, V. and Moreno-Valenzuela, J. (2011). Uniform global asymptotic stability of an adaptive output feedback tracking controller for robot manipulators, InternationalFederation of Automatic Control World Congress,Milan, Italy, pp. 14590-14595.
  35. Zavala-Rio, A., Aguinaga-Ruiz, E. and Santibanez, V. (2011). Global trajectory tracking through output feedback for robot manipulators with bounded inputs, Asian Journal of Control13(3): 430-438.10.1002/asjc.324
  36. Zergeroglu, E., Dawson, D.M., de Queiroz, M.S. and Krstic, M. (2000). On global output feedback tracking control of robot manipulators, Proceedings of the IEEE Conference on Decisionand Control, Sydney, Australia, pp. 5073-5077.
  37. Zhang, F., Dawson, D.M., de Queiroz, M.S. and Dixon, W.E. (2000). Global adaptive output feedback tracking control of robot manipulators, IEEE Transactions on Automatic Control45(6): 1203-1208. 10.1109/9.863607
DOI: https://doi.org/10.2478/amcs-2013-0045 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 599 - 611
Published on: Sep 30, 2013
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2013 Antonio Yarza, Victor Santibanez, Javier Moreno-Valenzuela, published by Sciendo
This work is licensed under the Creative Commons License.