Have a personal or library account? Click to login
A CATMULL-ROM SPLINE BASED ANALYTICAL C3 CONTINUOUS TOOL PATH SMOOTHING METHOD FOR ROBOTIC MACHINING Cover

A CATMULL-ROM SPLINE BASED ANALYTICAL C3 CONTINUOUS TOOL PATH SMOOTHING METHOD FOR ROBOTIC MACHINING

By: Xu-Lin CAI,  Wen-An YANG and  You-Peng YOU  
Open Access
|Dec 2025

References

  1. Verl A, Valente A, Melkote S, Brecher C, Ozturk E, Tunc LT. Robots in machining. CIRP Ann. 2019;68(2):799–822. Available from: https://doi.org/10.1016/j.cirp.2019.05.009
  2. Kim SH, Nam E, Ha TI, Hwang SH, Lee JH, Park SH, Min BK. [Title missing in your source – keep as original]. Int J Precis Eng Manuf. 2019;20(9-12):1629-1642. Available from: https://doi.org/10.1007/s12541-019-00187-w
  3. Lu L, Zhang J, Fuh JYH, Han J, Wang H. Time-optimal tool motion planning with tool-tip kinematic constraints for sculptured surfaces. Robot Comput-Integr Manuf. 2020;65:101969. Available from: https://doi.org/10.1016/j.rcim.2020.101969
  4. Shrivastava A, Dalla VK. Strategy of smooth motion planning of multiaxes space manipulator avoiding dynamic singularity in Cartesian space. J Braz Soc Mech Sci Eng. 2022;44(7):278. Available from: https://doi.org/10.1007/s40430-022-03578-9
  5. Guachetá-Alba JC, Nunez DA, Dutra MS, Mauledoux M, Aviles OF. Multi-objective optimization of 6-DOF deposition trajectories using NSGA-II. J Braz Soc Mech Sci Eng. 2023;45(11):610. Available from: https://doi.org/10.1007/s40430-023-04495-1
  6. Han J, Liu X, Jiang Y, Xia L, Lu L. An irredundant G01 tool path generation method for five-axis machining considering tool tip and orientation errors. Int J Adv Manuf Technol. 2019;103(1-4):1033–1044. Available from: https://doi.org/10.1007/s00170-019-03583-8
  7. Veysi M, Soltanpour MR, Khooban MH. A novel self-adaptive modified bat fuzzy sliding mode control of robot manipulator in presence of uncertainties in task space. Robotica. 2015;33(10):2045–2064. Available from: https://doi.org/10.1017/S0263574714001258
  8. Izadbakhsh A, Khorashadizadeh S. Robust task-space control of robot manipulators using differential equations for uncertainty estimation. Robotica. 2017;35(9):1923–1938. Available from: https://doi.org/10.1017/S0263574716000588
  9. Wang P, Yang H, Xue K. Jerk-optimal trajectory planning for Stewart platform in joint space. In: 2015 IEEE International Conference on Mechatronics and Automation (ICMA); 2015. p.1932–1937. Available from: https://doi.org/10.1109/ICMA.2015.7237781
  10. Chettibi T. Smooth point-to-point trajectory planning for robot manipulators by using radial basis functions. Robotica. 2019;37(3):539–559. Available from: https://doi.org/10.1017/S0263574718001169
  11. Kucuk S. Maximal dexterous trajectory generation and cubic spline optimization for fully planar parallel manipulators. Comput Electr Eng. 2016;56:634-647. Available from: https://doi.org/10.1016/j.compeleceng.2016.07.012
  12. Liu Q, Huang T. Inverse kinematics of a 5-axis hybrid robot with nonsingular tool path generation. Robot Comput-Integr Manuf. 2019;56:140-148. Available from: https://doi.org/10.1016/j.rcim.2018.06.003
  13. Lu Y, Zhang J, Fuh JYH, Han J, Wang H. Smooth tool path optimization for flank milling based on the gradient-based differential evolution method. J Manuf Sci Eng. 2016;138(8):081009. Available from: https://doi.org/10.1115/1.4032969
  14. Li D, Zhang W, Zhou W, Shang T, Fleischer J. Dual NURBS path smoothing for 5-axis linear path of flank milling. Int J Precis Eng Manuf. 2018;19(12):1811-1820. Available from: https://doi.org/10.1007/s12541-018-0209-6
  15. Hu Q, Chen Y, Jin X, Yang J. A real-time C3 continuous local corner smoothing and interpolation algorithm for CNC machine tools. J Manuf Sci Eng. 2019;141(4):041004. Available from: https://doi.org/10.1115/1.4042606
  16. Zhang Y, Ye P, Zhang H, Zhao M. A local and analytical curvature-smooth method with jerk-continuous feedrate scheduling along linear toolpath. Int J Precis Eng Manuf. 2018;19(10):1529-1538. Available from: https://doi.org/10.1007/s12541 -018-0180-2
  17. Xiao QB, Wan M, Liu Y, Qin XB, Zhang WH. Space corner smoothing of CNC machine tools through developing 3D general clothoid. Robot Comput-Integr Manuf. 2020;64:101949. Available from: https ://doi. org/10.1016/j.rcim.2020.101949
  18. Yang X, You Y, Yang Wa. Simultaneous optimization of curvature and curvature variation for tool path generation in high-speed milling of corners. J Braz Soc Mech Sci Eng. 2022;44:68. Available from: https://doi.org/10.1007/s40430-022-03360-x
  19. Jin Y, Bi Q, Wang Y. Dual-Bezier path smoothing and interpolation for five-axis linear tool path in workpiece coordinate system. Adv Mech Eng. 2015;7(7):1687814015595211. Available from: https://doi.org/10.1177/1687814015595211
  20. Yan Y, Zhang L, Zhang K. Corner smoothing transition algorithm for five-axis linear tool path. Procedia CIRP. 2016;56:604-609. Available from: https://doi.org/10.1016/j.procir.2016.10.119
  21. Huang J, Du X, Zhu LM. Real-time local smoothing for five-axis linear toolpath considering smoothing error constraints. Int J Mach Tools Manuf. 2018;124:67-79. Available from: https://doi.org/10.1016/j.ijmachtools.2017.10.001
  22. Zhao X, Zhao H, Wan S, Li X, Ding H. An analytical decoupled corner smoothing method for five-axis linear tool paths. IEEE Access. 2019;7:22763-22772. Available from: https://doi.org/10.1109/ACCESS.2019.2898703
  23. Huang X, Zhao F, Tao T, Mei X. A novel local smoothing method for five-axis machining with time-synchronization feedrate scheduling. IEEE Access. 2020;8:89185-89204. Available from: https://doi.org/10.1109/ACCESS.2020.2992022
  24. Yuen A, Zhang K, Altintas Y. Smooth trajectory generation for five-axis machine tools. Int J Mach Tools Manuf. 2013;71:11-19. Available from: https://doi.org/10.1016/j.ijmachtools.2013.04.002
  25. Tulsyan S, Altintas Y. Local toolpath smoothing for five-axis machine tools. Int J Mach Tools Manuf. 2015;96:15-26. Available from: https://doi.org/10.1016/j.ijmachtools.2015.04.014
  26. Yang J, Yuen A. An analytical local corner smoothing algorithm for five-axis CNC machining. Int J Mach Tools Manuf. 2017;123:22-35. Available from: https://doi.org/10.1016/j.ijmachtools.2017.07.007
  27. Hu Q, Chen Y, Jin X, Yang J. A real-time C3 continuous tool path smoothing and interpolation algorithm for five-axis machine tools. J Manuf Sci Eng. 2020;142(4):041002. Available from: https://doi.org/10.1115/1.4046091
  28. Yang J, Qi Q, Adili A, Ding H. An analytical tool path smoothing algorithm for robotic machining with the consideration of redundant kinematics. Robot Comput-Integr Manuf. 2024;89:102768. Available from: https://doi.org/10.1016/j.rcim.2024.102768
  29. Yang J, Li D, Ye C, Ding H. An analytical C3 continuous tool path corner smoothing algorithm for 6R robot manipulator. Robot Comput-In-tegr Manuf. 2020;64:101947. Available from: https://doi.org/10.1016/j.rcim.2019.101947
  30. Li J, Liu C. The C3 Quasi Catmull-Rom spline function with parameters. Mathematica Numerica Sinica. 2018;40(1):96-106. Available from: https://doi.org/10.12286/jssx.2018.1.96
  31. Erkorkmaz K. Optimal trajectory generation and precision tracking control for multi-axis machines [PhD thesis]. Vancouver (BC): The University of British Columbia; 2004. Available from: https://open.library.ubc.ca/collections/ubcthe-ses/831/items/1.0080705803
DOI: https://doi.org/10.2478/ama-2025-0088 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 790 - 803
Submitted on: Aug 13, 2025
|
Accepted on: Dec 10, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Xu-Lin CAI, Wen-An YANG, You-Peng YOU, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.