Have a personal or library account? Click to login
Antimicrobial Peptides as an Alternative Treatment for Oral Cavity Infections? Cover

Antimicrobial Peptides as an Alternative Treatment for Oral Cavity Infections?

Open Access
|Dec 2025

References

  1. Abranches J, Zeng L, Kajfasz JK, Palmer SR, Chakraborty B, Wen ZT, Richards VP, Brady LJ, Lemos JA. Biology of Oral Streptococci. Microbiol Spectr 2018 Jan;6(2):e0042-2018. https://doi.org/10.1128/microbiolspec.GPP3-0042-2018
  2. Ahn KB, Kim AR, Kum KY, Yun CH, Han SH. The synthetic human beta-defensin-3 C15 peptide exhibits antimicrobial activity against Streptococcus mutans, both alone and in combination with dental disinfectants. J Microbiol 2017 Aug;55(10):830-836. https://doi.org/10.1007/s12275-017-7362-y
  3. Aleksijević LH, Aleksijević M, Škrlec I, Šram M, Šram M, Talapko J. Porphyromonas gingivalis Virulence Factors and Clinical Significance in Periodontal Disease and Coronary Artery Diseases. Pathogens 2022 Oct;11(10):1173. https://doi.org/10.3390/patho-gens11101173
  4. Ali M, Garg A, Srivastava A, Arora PK. The role of antimicrobial peptides in overcoming antibiotic resistance. The Microbe 2025 Jun;7:100337. https://doi.org/10.1016/j.microb.2025.100337
  5. Aziz M. The Role of Microorganisms in Gingivitis Pathogenesis and Periodontal Disease. J Odontol 2024 Jan;8:705. https://doi.org/10.35248/JOY.24.8.705
  6. Bahar AA, Ren D. Antimicrobial Peptides. Pharmaceuticals 2013 Dec;6(12):1543-1575. https://doi.org/10.3390/ph6121543
  7. Barbosa JO, Rossoni RD, Vilela SF, de Alvarenga JA, Velloso MdS, Prata MC, Jorge AO, Junqueira JC. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans. PLoS One 2016 Mar;11(3):e0150457. https://doi.org/10.1371/journal.pone.0150457
  8. Batoni G, Maisetta G, Esin S. Therapeutic Potential of Antimicrobial Peptides in Polymicrobial BiofilmAssociated Infections. Int. J. Mol. Sci. 2021 Jan;22(2):482. https://doi.org/10.3390/ijms22020482
  9. Bhagat S, Jaiswal P, Kotecha SV. Clinical Features, Etiopatho genesis, and Therapeutic Approaches of Acute Gingival Lesions: A Narrative Review. Cureus 2025 Jun;17(6):e67129. https://doi.org/10.7759/cureus.67129
  10. Bigos P, Czerwińska R, Pajączkowska M, Nowicka J. Mieszany biofilm jamy ustnej. Postępy Mikrobiologii – Advancements of Microbiology 2021 Mar;60(1):47-58. https://doi.org/10.21307/PM-2021.60.1.05
  11. Blank E, Grischke J, Winkel A, Eberhard J, Kommerein N, Doll K, Yang I, Stiesch M. Evaluation of biofilm colonization on multipart dental implants in a rat model. BMC Oral Health 2021 Jun;21:313. https://doi.org/10.1186/s12903-021-01665-2
  12. Browne K, Chakraborty S, Chen R, Willcox MD, Black DS, Walsh WR, Kumar N. A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides. Int. J. Mol. Sci. 2020 Sep;21(19):7047. https://doi.org/10.3390/ijms21197047
  13. Bruni N, Capucchio MT, Biasibetti E, Pessione E, Cirrincione S, Giraudo L, Corona A, Dosio F. Antimicrobial Activity of Lacto-ferrinRelated Peptides and Applications in Human and Veterinary Medicine. Molecules 2021 Jun;26(11) 752 https://doi.org/10.3390/molecules21060752
  14. Bucataru C, Ciobanasu C. Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiol Res 2024 Jun;286:127822. https://doi.org/10.1016/j.micres.2024.127822
  15. Cardoso MH, Orozco RQ, Rezende SB, Rodrigues G, Oshiro KGN, Cândido ES, Franco OL. ComputerAided Design of Antimicrobial Peptides: Are We Generating Effective Drug Candidates? Front. Microbiol. 2019 Aug;10:3097. https://doi.org/10.3389/fmicb.2019.03097
  16. Chałas R, WójcikChęcińska I, Woźniak MJ, Grzonka J, Święsz-kowski W, Kurzydłowski KJ. Płytka bakteryjna jako biofilm – zagrożenia w jamie ustnej oraz sposoby zapobiegania/Dental plaque as a biofilm – a risk in oral cavity and methods to prevent. Postępy Higieny i Medycyny Doświadczalnej 2015 Dec;69:1140-1148. https://doi.org/10.5604/17322693.1173925
  17. Chen L, Jia L, Zhang Q, Zhou X, Liu Z, Li B, Zhu Z, Wang F, Yu C, Zhang Q, Chen F, Luo SZ. A novel antimicrobial peptide against dentalcariesassociated bacteria. Anaerobe 2017 May;47:165-172. https://doi.org/10.1016/j.anaerobe.2017.05.016
  18. Chen N, Jiang C. Antimicrobial peptides: Structure, mechanism, and modification. Eur. J. Med. Chem. 2023 Jul;255:115377. https://doi.org/10.1016/j.ejmech.2023.115377
  19. Cresti L, Cappello G, Pini A. Antimicrobial Peptides towards Clinical Application — A Long History to Be Concluded. Int. J. Mol. Sci. 2024 Apr;25(9):4870. https://doi.org/10.3390/ijms25094870
  20. Czarnowski M, Wnorowska U, Łuckiewicz M, Dargiewicz E, Spałek J, Okła S, Sawczuk B, Savage PB, Bucki R, Piktel E. Natural Antimicrobial Peptides and Their Synthetic Analogues for Effective Oral Microflora Control and Oral Infection Treatment — The Role of Ceragenins in the Development of New Therapeutic Methods. Pharmaceuticals 2024 Dec;17(12):1725. https://doi.org/10.3390/ph17121725
  21. Czechowicz P, Nowicka J, Gościniak G. Virulence Factors of Candida spp. and Host Immune Response Important in the Pathogenesis of Vulvovaginal Candidiasis. Int. J. Mol. Sci. 2022 May;23(11):5895. https://doi.org/10.3390/ijms23115895
  22. Czechowicz P, Nowicka J. Antimicrobial activity of lipopeptides. Adv. Microbiol. 2018 Jan;57(3):213-227. https://doi.org/10.21307/PM2018.57.3.213
  23. Drago F, Ciccarese G, Merlo G, Trave I, Javor S, Rebora A, Parodi A. Oral and cutaneous manifestations of viral and bacterial infections: Not only COVID 19 disease. Clin. Dermatol. 2021 Sep;39(5):384-404. https://doi.org/10.1016/j.clinderma-tol.2021.01.021
  24. Enax J, Amaechi BT, Schulze zur Wiesche E, Meyer F. Overview on Adjunct Ingredients Used in Hydroxyapatite-Based Oral Care Products. Biomimetics 2022 Dec;7(4):250. https://doi.org/10.3390/biomimetics7040250
  25. Enigk K, Jentsch H, Rodloff AC, Eschrich K, Stingu CS. Activity of five antimicrobial peptides against periodontal as well as nonperiodontal pathogenic strains. J. Oral Microbiol. 2020 Oct;12(1):1829405. https://doi.org/10.1080/20002297.2020.1829405
  26. Erdem Büyükkiraz M, Kesmen Z. Antimicrobial peptides (AMPs): a promising class of antimicrobial compounds. J. Appl. Microbiol. 2022 Jul;132(6):1573-1596. https://doi.org/10.1111/jam.15314
  27. Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M. NanotechnologyBased Delivery Systems for Antimicrobial Peptides. Pharmaceutics 2024 Nov;13(11):1795. https://doi.org/10.3390/pharmaceutics13111795
  28. Gao N, Sun J, Li X, Yao Y, Hu Y, Zhao J, Shan A, Wang J. Overcoming delivery challenges of antimicrobial peptides for clinical translation: From nanocarriers to molecular modifications. Drug Resist. Updates 2025 Nov;83:101289. https://doi.org/10.1016/j. drup.2025.101289
  29. Geng H, Yuan Y, Adayi A, Zhang X, Song X, Gong L, Zhang X, Gao P. Engineered chimeric peptides with antimicrobial and titaniumbinding functions to inhibit biofilm formation on Ti implants. Mater Sci Eng C Mater Biol Appl. 2018 Jan;82:141-154. https://doi.org/10.1016/j.msec.2017.08.062
  30. Giordano-Kelhoffer B, Lorca C, March Llanes J, Rábano A, del Ser T, Serra A, GallartPalau X. Oral Microbiota, Its Equilibrium and Implications in the Pathophysiology of Human Diseases: A Systematic Review. Biomedicines 2022 Aug;10(8):1803. https://doi.org/10.3390/biomedicines10081803
  31. Gonçalves RM, Monges BED, Oshiro KGN, Cândido ES, Pimentel JPF, Franco OL, Cardoso MH. Advantages and Challenges of Using Antimicrobial Peptides in Synergism with Antibiotics for Treating MultidrugResistant Bacteria. ACS Infect. Dis. 2025 Jan;11(2):323-334. https://doi.org/10.1021/acsinfecdis.4c00702
  32. Gorr SU. Antimicrobial peptides in periodontal innate defense. Front. Oral Biol. 2012 Nov;15:84-98. https://doi.org/10.1159/000329673
  33. Griffith A, Mateen A, Markowitz K, Singer SR, Cugini C, Shimizu E, Wiedman GR, Kumar V. Alternative Antibiotics in Dentistry: Antimicrobial Peptides. Pharmaceutics 2024 Aug;14(8):1679. https://doi.org/10.3390/pharmaceutics14081679
  34. Grinde B, Olsen I. The role of viruses in oral disease. J. Oral Microbiol. 2010 Feb;2:2127. https://doi.org/10.3402/jom.v2i0.2127
  35. Guo L, Edlund A. Targeted Antimicrobial Peptides: A Novel Technology to Eradicate Harmful Streptococcus mutans. J. Calif. Dent. Assoc. 2017 Oct;45(10):557-564.
  36. Hao Y, Wang J, de la Fuente-Núñez C, Franco OL. Editorial: Antimicrobial Peptides: Molecular Design, StructureFunction Relationship, and Biosynthesis Optimization. Front. Microbiol. 2022 Nov;13:888540. https://doi.org/10.3389/fmicb.2022.888540
  37. Hashim NT, Babiker R, Padmanabhan V, Ahmed AT, Chaitanya NCSK, Mohammed R, Priya SP, Ahmed A, El Bahra S, Islam MS, Gismalla BG, Rahman MM. The Global Burden of Periodontal Disease: A Narrative Review on Unveiling Socioeconomic and Health Challenges. Int. J. Environ. Res. Public Health 2025 Apr;22(4):624. https://doi.org/10.3390/ijerph22040624
  38. Hetta HF, Sirag N, Alsharif SM, Alharbi AA, Alkindy TT, Alkhamali A, Albalawi AS, Ramadan YN, Rashed ZI, Alanazi FE. Antimicrobial Peptides: The GameChanger in the Epic Battle Against MultidrugResistant Bacteria. Pharmaceuticals 2024 Nov;17(11):1555. https://doi.org/10.3390/ph17111555
  39. Holmberg KV, Abdolhosseini M, Li Y, Chen X, Gorr SU, Aparicio C. Bioinspired stable antimicrobial peptide coatings for dental applications. Acta Biomater. 2013 Sep;9(9):8224-8231. https://doi.org/10.1016/j.actbio.2013.06.017 Https://aps.unmc.edu/(08.05.2025)
  40. Hu CC, Kumar SR, Vi TTT, Huang YT, Chen DW, Lue SJ. Facilitating GL13K Peptide Grafting on Polyetheretherketone via 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Surface Properties and Antibacterial Activity. Int. J. Mol. Sci. 2023 Jan;24(1):359. https://doi.org/10.3390/ijms23010359
  41. Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020 Oct; 11:582779. https://doi.org/10.3389/fmicb.2020.582779
  42. Im S, Lee JH, Shim YS. Antimicrobial Peptides Targeting Oral Pathogens: Applicability as an Oral Disease Treatment and Dental Material. J. Dent. Hyg. Sci. 2024 Apr;24(4):231-248. https://doi.org/10.17135/jdhs.2024.24.4.231
  43. Jakubovics NS, Kolenbrander PE. The road to ruin: the formation of diseaseassociated oral biofilms. Oral Dis. 2010 Jul;16(6):729-739 http://doi.org/10.1111/j.1601-0825.2010.01701.x
  44. Janiszewska J. Naturalne peptydy przeciwdrobnoustrojowe w zastosowaniach biomedycznych. Polimery 2014 Nov;59(11):699-707. https://doi.org/10.14314/polimery.2014.699
  45. Jao Y, Ding SJ, Chen CC. Antimicrobial photodynamic therapy for the treatment of oral infections: A systematic review. J. Dent. Sci. 2023 Sep; 18(4): 1453-1466. https://doi.org/10.1016/j. jds.2023.07.002
  46. Jia L, Han N, Du J, Guo L, Luo Z, Liu Y. Pathogenesis of Important Virulence Factors of Porphyromonas gingivalis via Toll-Like Receptors. Front. Cell. Infect. Microbiol. 2019 Jul;9:262. https://doi.org/10.3389/fcimb.2019.00262
  47. Jiang S, Zha Y, Zhao T, Jin X, Zhu R, Wei S, Wang R, Song Y, Li L, Lyu J, Hu W, Zhang D, Wang M, Zhang Y. Antimicrobial peptide temporin derivatives inhibit biofilm formation and virulence factor expression of Streptococcus mutans. Front. Microbiol. 2023 Sep;14:1267389. https://doi.org/10.3389/fmicb.2023.1267389
  48. Kaczmarzyk T, Babiuch K, Bołtacz-Rzepkowska E, Dominiak M, Konopka T, Lipski M, Olczak-Kowalczyk D, Szeląg A, Szuta M, Hryniewicz W. Rekomendacje Grupy Roboczej Polskie Towarzystwo Stomatologiczne i Narodowy Program Ochrony Antybiotyków w zakresie stosowania antybiotyków w stomatologii. Warszawa: Narodowy Instytut Leków; 2019.
  49. Kamysz W, Okrój M, Łukasiak J, Kędzia A. Histatyny – białka ślinowe bogate w histydynę. Borgis – Nowa Stomatologia 2004 Jan;1:43-45.
  50. Kavanagh K, Dowd S. Histatins: antimicrobial peptides with therapeutic potential. J. Pharm. Pharmacol. 2004 Jul;56(2):285-289. https://doi.org/10.1211/0022357022971
  51. Khan SA, Fidel PL Jr, Thunayyan AA, Varlotta S, Meiller TF, Jabra-Rizk MA. Impaired Histatin-5 Levels and Salivary Antimicrobial Activity against Candida albicans in HIV-Infected Individuals. J. AIDS Clin. Res. 2013 Mar;4:193. https://doi.org/10.4172/2155-6113.1000193
  52. Khurshid Z, Najeeb S, Mali M, Moin SF, Raza SQ, Zohaib S, Se-fat F, Zafar MS. Histatin peptides: Pharmacological functions and their applications in dentistry. Saudi Pharm. J. 2017 Jan;25(1):25-31. https://doi.org/10.1016/j.jsps.2016.04.027
  53. Khurshid Z, Naseem M, Sheikh Z, Najeeb S, Shahab S, Zafar MS. Oral antimicrobial peptides: Types and role in the oral cavity. Saudi Pharm. J. 2016 May;24(5):515-524. https://doi.org/10.1016Zj.jsps.2015.02.015
  54. Komatsu T, Watanabe K, Hamada N, Helmerhorst E, Oppenheim F, Lee MC. Association between Antimicrobial Peptide Histatin 5 Levels and Prevalence of Candida in Saliva of Patients with Down Syndrome. Antibiotics (Basel) 2024 May;10(5):494. https://doi.org/10.3390/antibiotics10050494
  55. Kong X, Vishwanath V, Neelakantan P, Ye Z. Harnessing antimicrobial peptides in endodontics. Int. Endod. J. 2024 Jul;57(7):815-840. https://doi.org/10.1111/iej.14043
  56. Körtvélyessy G, Tarjányi T, Baráth ZL, Minarovits J, Tóth Z. Bioactive coatings for dental implants: A review of alternative strategies to prevent peri-implantitis induced by anaerobic bacteria. Anaerobe 2021 Sep;70: 102404. https://doi.org/10.1016/j.anaer-obe.2021.102404
  57. Kozak U, Lasota A, Chałas R. Changes in Distribution of Dental Biofilm after Insertion of Fixed Orthodontic Appliances. J. Clin. Med. 2021 Nov;10(23):5638. https://doi.org/10.3390/jcm10235638
  58. Kulis E, Cvitković I, Pavlović N, Kumrić M, Rusić D, Božić JA. Comprehensive Review of Antibiotic Resistance in the Oral Microbiota: Mechanisms, Drivers, and Emerging Therapeutic Strategies. Antibiotics (Basel) 2024 Aug;14(8):828. https://doi.org/10.3390/antibiotics14080828
  59. Lavanya N, Jayanthi P, Rao UK, Ranganathan K. Oral lichen planus: An update on pathogenesis and treatment. J. Oral Maxillofac. Pathol. 2011 May;15(2):127-132. https://doi.org/10.4103/0973-029X.84474
  60. Lertsirivorakul J, Petsongkram B, Chaiyarit P, Klaynongsruang S, Pitiphat W. Salivary Lysozyme in Relation to Dental Caries among Thai Preschoolers. J. Clin. Pediatr. Dent. 2015 Jul;39(4):343-347. https://doi.org/10.17796/1053-4628-39.4.343
  61. Li T, Wang N, Chen S, Lu R, Li H, Zhang Z. Antibacterial activity and cytocompatibility of an implant coating consisting of TiO2 nanotubes combined with a GL13K antimicrobial peptide. Int. J. Nanomedicine 2017 Apr;12:2995-3007. https://doi.org/10.2147/IJN.S128775
  62. Li Z, Li J, Fu R, Liu J, Wen X, Zhang L. Halitosis: etiology, prevention, and the role of microbiota. Clin. Oral Investig. 2023 Oct;27(11):6383-6393. https://doi.org/10.1007/s00784-023-05292-9
  63. Luong AD, Buzid A, Luong JHT. Important Roles and Potential Uses of Natural and Synthetic Antimicrobial Peptides (AMPs) in Oral Diseases: Cavity, Periodontal Disease, and Thrush. J. Funct. Biomater. 2022 Oct;13(4):175. https://doi.org/10.3390/jfe13040175
  64. Lyu Z, Yang P, Lei J, Zhao J. Biological Function of Antimicrobial Peptides on Suppressing Pathogens and Improving Host Immunity. Antibiotics 2023 Jun;12(6):1037. https://doi.org/10.3390/antibiotics12061037
  65. Mabrouk DM. Antimicrobial peptides: features, applications and the potential use against COVID19. Mol. Biol. Rep. 2022 May;49(10):10039-10050. https://doi.org/10.1007/s11033-022-07572-1
  66. Marianantoni G, Meogrossi G, Tollapi E, Rencinai A, Brunetti J, Marruganti C, Gaeta C, Pini A, Bracci L, Ferrari M, Grandini S, Falciani C. Antimicrobial Peptides Active in In Vitro Models of Endodontic Bacterial Infections Modulate Inflammation in Human Cardiac Fibroblasts. Pharmaceutics 2024 Oct;14(10):2081. https://doi.org/10.3390/pharmaceutics14102081
  67. Maslii Y, Garmanchuk L, Ruban O, Dovbynchuk T, Herbina N, Kasparavičienė G, Bernatonienė J. The Study of the Cytotoxicity, Proliferative and Microbiological Activity of the Medicated Chewing Gum with Ascorbic Acid and Lysozyme Hydrochloride Using Different Culture of Cells. Pharmaceutics 2023 Jul;15(7):1894. https://doi.org/10.3390/pharmaceutics15071894
  68. Minkiewicz-Zochniak A, Jarzynka S, Iwańska A, Strom K, Iwańczyk B, Bartel M, Mazur M, PietruczukPadzik A, Konieczna M, AugustynowiczKopeć E, Olędzka G. Biofilm Formation on Dental Implant Biomaterials by Staphylococcus aureus Strains Isolated from Patients with Cystic Fibrosis. Materials (Basel) 2021 Aug;14(8):2030. https://doi.org/10.3390/ma14082030
  69. Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, Falabella P. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front. Cell. Infect. Microbiol. 2021 Jun;11:668632. https://doi.org/10.3389/fcimb.2021.668632
  70. Nakatsuji T, Gallo RL. Antimicrobial peptides: old molecules with new ideas. J. Invest. Dermatol. 2012 Feb;132(2):887-895. https://doi.org/10.1038/jid.2011.387
  71. Niedźwiedzka-Rystwej P, Deptuła W. Defensyny — ważny wrodzony element układu odpornościowego u ssaków. Postępy Hig. Med. Dośw. 2008 Dec;62:524-529.
  72. Nilsson BO. What can we learn about functional importance of human antimicrobial peptide LL37 in the oral environment from severe congenital neutropenia (Kostmann disease)? Peptides 2020 Jun;128:170311. https://doi.org/10.1016/j.peptides.2020.170311
  73. Nowicka J, Janczura A, Pajączkowska M, Chodaczek G, SzymczykZiółkowska P, Walczuk U, Gościniak G. Effect of Camel Peptide on the Biofilm of Staphylococcus epidermidis and Staphylococcus haemolyticus Formed on Orthopedic Implants. Antibiotics (Basel) 2023 Nov;12(12):1671. https://doi.org/10.3390/antibiotics12121671
  74. Octiara E, Heriandi S, Yahwardiah S, Ameta P. Lysozyme quantity and quality in relation with early childhood caries: A longitudinal study. J. Pharm. Pharmacogn. Res. 2022 JulAug;10(4):652-659. https://doi.org/10.56499/jppres22.1362 10.4.652
  75. Oh H, Hedberg M, Wade D, Edlund C. Activities of synthetic hybrid peptides against anaerobic bacteria: aspects of methodology and stability. Antimicrob. Agents Chemother. 2000 Jan;44(1):68-72. https://doi.org/10.1128/aac.44.1.6872.2000
  76. Palone M, Preite C, Lombardo L. Microbiota changes in the periodontium in response to orthodontic forces. Semin. Orthod. 2024 May;30(2):135-140. https://doi.org/10.1053/j.sodo.2023.10.001
  77. Papaioannou W, Panagopoulos A, KoletsiKounari H, Kontou E, Makou M. Adhesion of Porphyromonas gingivalis and Biofilm Formation on Different Types of Orthodontic Brackets. Int. J. Dent. 2012;2012:471380. https://doi.org/10.1155/2012/471380
  78. Park OJ, Kwon Y, Park C, So YJ, Park TH, Jeong S, Im J, Yun CH, Han SH. Streptococcus gordonii: Pathogenesis and Host Response to Its Cell Wall Components. Microorganisms 2020 Dec;8(12):1852. https://doi.org/10.3390/microorganisms8121852
  79. Piekoszewska-Ziętek P, Turska-Szybka A, Olczak-Kowalczyk D. Infekcje zębopochodne – przegląd piśmiennictwa/Odontogenic infections – review of the literature. Nowa Stomatol. 2016;21:120-134. https://doi.org/10.5604/14266911.1208252
  80. Pisano M, Giordano F, Sangiovanni G, Capuano N, Acerra A, D’Ambrosio F. The Interaction between the Oral Microbiome and Systemic Diseases: A Narrative Review. Microbiol. Res. 2023 Apr;14(4):127. https://doi.org/10.3390/microbiolres14040127
  81. Rajendra Santosh AB, Muddana K, Bakki SR. Fungal Infections of Oral Cavity: Diagnosis, Management, and Association with COVID19. SN Compr. Clin. Med. 2021 Mar;3(6):1373-1384. https://doi.org/10.1007/s42399-021-00873-9
  82. Rapala-Kozik M, Surowiec M, Juszczak M, Wronowska E, Kulig K, Bednarek A, GonzalezGonzalez M, KarkowskaKuleta J, Zawrotniak M, Satała D, Kozik A. Living together: The role of Candida albicans in the formation of polymicrobial biofilms in the oral cavity. Yeast 2023 Aug;40(8):303-317. https://doi.org/10.1002/yea.3855
  83. Ryan JB, Kirkwood BJ, Leung KP. Combined Phase 1/2a Initial Clinical Safety Trials and ProofofConcept Assessment of a Novel Antimicrobial Peptide KSLW AntiPlaque Chewing Gum. Clin. Exp. Dent. Res. 2024 Oct;10(2):e943. https://doi.org/10.1002/cre2.943
  84. Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare (Basel) 2024 Jul;11(13):1946. https://doi.org/10.3390/healthcare11131946
  85. Samaranayake LP. Podstawy mikrobiologii dla stomatologów. Warszawa: Wydawnictwo Lekarskie PZWL; 2004.
  86. Sbricoli L, Grisolia G, Stellini E, Bacci C, Annunziata M, Bressan E. Antibiotic-Prescribing Habits in Dentistry: A QuestionnaireBased Study. Antibiotics 2024 Feb;13(2):189. https://doi.org/10.3390/antibiotics13020189
  87. Shavit E, Hagen K, Shear N. Oral lichen planus: a novel staging and algorithmic approach and all that is essential to know. F1000Re search 2020 Mar;9:18713. https://doi.org/10.12688/f1000re-search.18713.1
  88. Shen S, Liu X, Huang J, Sun Y, Liu B, Song W, Meng L, Du M, Feng Q. Efficacy of a mouthwash containing εpoly-L-lysine, funme peptides and domiphen in reducing halitosis and supragingival plaque: a randomized clinical trial. BMC Oral Health 2024 May;24:525. https://doi.org/10.1186/s12903-024-04255-0
  89. Shifana AF, Sargod SS, Rao HTA, Hegde N. New understanding of the systematic relation to the etiology of dental caries. Int. J. Oral Health Dent. 2024;10(4):262-265. https://doi.org/10.18231/j.ijohd.2024.046
  90. Szewczyk EM: Diagnostyka bakteriologiczna. Wydawnictwo Naukowe PWN SA, Warszawa, 2019
  91. Teoh L, Stewart K, Marino R, McCullough M. Antibiotic resistance and relevance to general dental practice in Australia. Aust Dent J 2018 Jul;63:414-421. https://doi.org/10.1111/adj.12643
  92. Velsko IM, Fellows Yates JA, Aron F, Hagan RW, Frantz LAF, Loe L, Martinez JBR, Chaves E, Gosden C, Larson G, Warinner C, et al. Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage. Microbiome 2019 Jul;7:1-14. https://doi.org/10.1186/s40168-019-0717-3
  93. Vila T, Rizk AM, Sultan AS, Jabra-Rizk MA. The power of saliva: Antimicrobial and beyond. PLoS Pathog 2019 Nov;15:e1008058. https://doi.org/10.1371/journal.ppat.1008058
  94. Vila T, Sultan AS, Montelongo-Jauregui D, Jabra Rizk MA. Oral Candidiasis: A Disease of Opportunity. J Fungi (Basel) 2020 Jan;6(1):15. https://doi.org/10.3390/jof6010015
  95. Wang BY, Wu J, Lamont RJ, Lin X, Xie H. Negative correlation of distributions of Streptococcus cristatus and Porphyromonas gingivalis in subgingival plaque. J Clin Microbiol 2009 Dec;47(12):3902-3906. https://doi.org/10.1128/JCM.00072-09
  96. Wang G. Improved Methods for Classification, Prediction and Design ofAntimicrobial Peptides. Methods Mol Biol 2015 Sep;1268:43-66. https://doi.org/10.1007/978-1-4939-2285-7 3
  97. Weise H, Naros A, Weise C, Reinert S, Hoefert S. Severe odontogenic infections with septic progress – a constant and increasing challenge: a retrospective analysis. BMC Oral Health 2019 Aug;19:173. https://doi.org/10.1186/s12903-019-0866-6
  98. Witkowska D, Bartyś A, Gamian A: Defensyny i katelicydyny jako naturalne antybiotyki peptydowe. Posep. Hig. Med. Dosw. 2008 Dec;62, 694-707
  99. Wojtkowska AA, Wysokiński A. Wpływ zapalenia przyzębia na występowanie chorób układu sercowo-naczyniowego. Chor Serca Naczyń 2015 Nov;12(5):289-294.
  100. Wu Y, Cai P, Jing X, Niu X, Ji D, Ashry NM, Gao C, Huang Q. Soil biofilm formation enhances microbial community diversity and metabolic activity. Environ Int 2019 Nov;132:105116. https://doi.org/10.1016/j.envint.2019.105116
  101. Xiong K, Chen X, Hu H, Hou H, Gao P, Zou L. Antimicrobial Effect of a Peptide Containing Novel Oral Spray on Streptococcus mutans. Biomed Res Int 2020 Mar;2020:6853652. https://doi.org/10.1155/2020/6853652
  102. Yan J, Cai J, Zhang B, Wang Y, Wong DF, Siu SWI. Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning. Antibiotics 2022 Oct;11(10):1451. https://doi.org/10.3390/antibiotics11101451
  103. Yang J, Zhang J, Feng Z, Ma Y. The Role and Mechanisms of Antimicrobial Peptides in Overcoming Multidrug-Resistant Bacteria. Molecules 2025 Jan;30(1):128. https://doi.org/10.3390/mole-cules30010128
  104. Yekani M, Dastgir M, Fattahi S, Shahi S, Maleki Dizaj S, Memar MY. Microbiological and molecular aspects of periodontitis pathogenesis: an infectioninduced inflammatory condition. Front Cell Infect Microbiol 2025 May;15:1533658. https://doi.org/10.3389/fcimb.2025.1533658
  105. Yener SB, Özsoy ÖP. Quantitative analysis of biofilm formation on labial and lingual bracket surfaces. Angle Orthod 2019 Jul;90(1):100-108. https://doi.org/10.2319/110818-803.1
  106. Zainal Baharin NH, Khairil Mokhtar NF, Mohd Desa MN, Gopalsamy B, Mohd Zaki NN, Yuswan MH, Muthanna A, Dzaraly ND, Abbasiliasi S, Mohd Hashim A, Abdullah Sani MS, Mustafa S. The characteristics and roles of antimicrobial peptides as potential treatment for antibioticresistant pathogens: a review. PeerJ 2021 Dec;9:e12193. https://doi.org/10.7717/peerj.12193
  107. Zhang LJ, Gallo RL. Antimicrobial peptides. Curr Biol 2016 Jan;26:R14-R19. https://doi.org/10.1016/j.cub.2015.11.017
  108. Zhang LY, Fang ZH, Li QL, Cao CY. A tooth-binding antimicrobial peptide to prevent the formation of dental biofilm. J Mater Sci Mater Med 2019 Mar;30(4):45. https://doi.org/10.1007/s10856-019-6246-6
  109. Zhang OL, Niu JY, Yu OY, Mei ML, Jakubovics NS, Chu CH. Development of a Novel Peptide with Antimicrobial and Mineralising Properties for Caries Management. Pharmaceutics 2023 Oct; 15(11):2560. https://doi.org/10.3390/pharmaceutics15112560
  110. Zhang OL, Niu JY, Yu OY, Mei ML, Jakubovics NS, Chu CH. Peptide Designs for Use in Caries Management: A Systematic Review. Int J Mol Sci 2023 Feb;24(4):4247. https://doi.org/10.3390/ijms24044247
  111. Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, Cheng XR, Liu J, Kang J, Fu CY. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 2021 Sep;8(1):48. https://doi.org/10.1186/s40779021003432
  112. Zheng S, Tu Y, Li B, Qu G, Li A, Peng X, Li S, Shao C. Antimicrobial peptide biological activity, delivery systems and clinical translation status and challenges. J Transl Med 2025 Mar;23:292. https://doi.org/10.1186/s12967-025-06321-9
DOI: https://doi.org/10.2478/am-2025-0020 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 251 - 269
Submitted on: May 15, 2025
|
Accepted on: Dec 3, 2025
|
Published on: Dec 23, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Joanna Nowicka, Aleksandra Banaszczyk, Julia Dembowska, Magdalena Pajączkowska, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.