Have a personal or library account? Click to login
Mechanism of RBM15 in Regulating PD-L1-Mediated Immune Escape in Ovarian Cancer Through the JAK2/STAT3/STAT5 Pathway Cover

Mechanism of RBM15 in Regulating PD-L1-Mediated Immune Escape in Ovarian Cancer Through the JAK2/STAT3/STAT5 Pathway

Open Access
|Feb 2026

References

  1. Bagratuni T, Mavrianou N, Gavalas NG et al. (2020) JQ1 inhibits tumour growth in combination with cisplatin and suppresses JAK/STAT signalling pathway in ovarian cancer. Eur J Cancer 126:125–135. https://doi.org/10.1016/j.ejca.2019.11.017
  2. Cai X, Li X, Zhang M et al. (2025) RBM15 promotes lipogenesis and malignancy in gastric cancer by regulating N6-methyladenosine modification of ACLY mRNA in an IGF2BP2-dependent manner. Biochim Biophys Acta Mol Cell Biol Lipids 1870:159580. https://doi.org/10.1016/j.bbalip.2024.159580
  3. Chardin L, Leary A (2021) Immunotherapy in ovarian cancer: Thinking beyond PD-1/PD-L1. Front Oncol 11:795547. https://doi.org/10.3389/fonc.2021.795547
  4. Chen L, Shan G (2021) CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Lett 505:49–57. https://doi.org/10.1016/j.canlet.2021.02.004
  5. Chen M, Wang S (2024) Preclinical development and clinical studies of targeted JAK/STAT combined Anti-PD-1/PD-L1 therapy. Int Immunopharmacol 130:111717. https://doi.org/10.1016/j.intimp.2024.111717
  6. Deng X, Sun X, Hu Z et al. (2023) Exploring the role of m6A methylation regulators in glioblastoma multiforme and their impact on the tumor immune microenvironment. FASEB J 37:e23155. https://doi.org/10.1096/fj.202301343
  7. Dong H, Zhang H, Mao X et al. (2023) RBM15 promates the proliferation, migration and invasion of pancreatic cancer cell lines. Cancers 15:1084. https://doi.org/10.3390/cancers15041084
  8. Dudekula DB, Panda AC, Grammatikakis I et al. (2016) CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13:34–42. https://doi.org/10.1080/15476286.2015.1128065
  9. Erdogan F, Radu TB, Orlova A et al. (2022) JAK-STAT core cancer pathway: An integrative cancer interactome analysis. J Cell Mol Med 26:2049–2062. https://doi.org/10.1111/jcmm.17228
  10. Groner B, von Manstein V (2017) JAK STAT signaling and cancer: Opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol 451:1–14. https://doi.org/10.1016/j.mce.2017.05.033
  11. Hu Q, Bian Q, Rong D et al. (2023) JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol 11:1110765. https://doi.org/10.3389/fbioe.2023.1110765
  12. Hu X, Li J, Fu M et al. (2021) The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct Target Ther 6:402. https://doi.org/10.1038/s41392-021-00791-1
  13. Jiang X, Liu B, Nie Z et al. (2021) The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6:74. https://doi.org/10.1038/s41392-020-00450-x
  14. Kuroki L, Guntupalli SR (2020) Treatment of epithelial ovarian cancer. BMJ 371:m3773. https://doi.org/10.1136/bmj.m3773
  15. Li H, Lin R, Zhang Y et al. (2024) N6-methyladenosine-modified circPLPP4 sustains cisplatin resistance in ovarian cancer cells via PIK3R1 upregulation. Mol Cancer 23:5. https://doi.org/10.1186/s12943-023-01917-5
  16. Li JH, Liu S, Zhou H et al. (2014) starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97. https://doi.org/10.1093/nar/gkt1248
  17. Li H, Li Y, Zheng X et al. (2025) RBM15 facilitates osimertinib resistance of lung adenocarcinoma through m6A-dependent epigenetic silencing of SPOCK1. Oncogene 44:307–321. https://doi.org/10.1038/s41388-024-03220-z
  18. Lin CF, Lin CM, Lee KY et al. (2017) Escape from IFN-gamma-dependent immunosurveillance in tumorigenesis. J Biomed Sci 24:10. https://doi.org/10.1186/s12929-017-0317-0
  19. Liu C, Yin Q, Wu Z et al. (2025) Inflammation and immune escape in ovarian cancer: Pathways and therapeutic opportunities. J Inflamm Res 18:895–909. https://doi.org/10.2147/JIR.S503479
  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
  21. Miao Z, Li J, Wang Y et al. (2023) Hsa_circ_0136666 stimulates gastric cancer progression and tumor immune escape by regulating the miR-375/PRKDC Axis and PD-L1 phosphorylation. Mol Cancer 22:205. https://doi.org/10.1186/s12943-023-01883-y
  22. Morand S, Devanaboyina M, Staats H et al. (2021) Ovarian cancer immunotherapy and personalized medicine. Int J Mol Sci 22:6532. https://doi.org/10.3390/ijms22126532
  23. Park SH, Ju JS, Woo H et al. (2024) The m(6)A writer RBM15 drives the growth of triple-negative breast cancer cells through the stimulation of serine and glycine metabolism. Exp Mol Med 56:1373–1387. https://doi.org/10.1038/s12276-024-01235-w
  24. Peng Z, Li M, Li H et al. (2023) PD-1/PD-L1 immune checkpoint blockade in ovarian cancer: Dilemmas and opportunities. Drug Discov Today 28:103666. https://doi.org/10.1016/j.drudis.2023.103666
  25. Rah B, Rather RA, Bhat GR et al. (2022) JAK/STAT signaling: Molecular targets, therapeutic opportunities, and limitations of targeted inhibitions in solid malignancies. Front Pharmacol 13:821344. https://doi.org/10.3389/fphar.2022.821344
  26. Shi R, Zhao R, Shen Y et al. (2024) IGF2BP2-modified circular RNA circCHD7 promotes endometrial cancer progression via stabilizing PDGFRB and activating JAK/STAT signaling pathway. Cancer Gene Ther 31:1221–1236. https://doi.org/10.1038/s41417-024-00781-9
  27. Song Y, Wu Q (2023) RBM15 m(6) A modification-mediated OTUB2 upregulation promotes cervical cancer progression via the AKT/mTOR signaling. Environ Toxicol 38:2155–2164. https://doi.org/10.1002/tox.23852
  28. Stewart C, Ralyea C, Lockwood S (2019) Ovarian cancer: An integrated review. Semin Oncol Nurs 35:151–156. https://doi.org/10.1016/j.soncn.2019.02.001
  29. Tian Q, Mu Q, Liu S et al. (2023) m6A-modified circASXL1 promotes proliferation and migration of ovarian cancer through the miR-320d/RACGAP1 axis. Carcinogenesis 44:859–870. https://doi.org/10.1093/carcin/bgad066
  30. Wang H, Cao Y, Zhang L et al. (2025) RBM15 drives breast cancer cell progression and immune escape via m6A-dependent stabilization of KPNA2 mRNA. Clin Breast Cancer 25:96–107. https://doi.org/10.1016/j.clbc.2024.09.006
  31. Wang X, Tian L, Li Y et al. (2021) RBM15 facilitates laryngeal squamous cell carcinoma progression by regulating TMBIM6 stability through IGF2BP3 dependent. J Exp Clin Cancer Res 40:80. https://doi.org/10.1186/s13046-021-01871-4
  32. Wang R, Ye H, Yang B et al. (2023) m6A-modified circNFIX promotes ovarian cancer progression and immune escape via activating IL-6R/JAK1/STAT3 signaling by sponging miR-647. Int Immunopharmacol 124(Pt A):110879. https://doi.org/10.1016/j.intimp.2023.110879
  33. Webb PM, Jordan SJ (2024) Global epidemiology of epithelial ovarian cancer. Nat Rev Clin Oncol 21:389–400. https://doi.org/10.1038/s41571-024-00881-3
  34. Xue C, Yao Q, Gu X et al. (2023) Evolving cognition of the JAK-STAT signaling pathway: Autoimmune disorders and cancer. Signal Transduct Target Ther 8:204. https://doi.org/10.1038/s41392-023-01468-7
  35. Xu X, Li C, Zou J et al. (2023) MiR-34a targets SIRT1 to reduce 53 deacetylation and promote sevoflurane inhalation anesthesia-induced neuronal autophagy and apoptosis in neonatal mice. Exp Neurol 368:114482. https://doi.org/10.1016/j.expneurol.2023.114482
  36. Yuan J, Guan W, Li X et al. (2023) RBM15 mediating MDR1 mRNA m(6)A methylation regulated by the TGF beta signaling pathway in paclitaxel resistant ovarian cancer. Int J Oncol 63:112. https://doi.org/10.3892/ijo.2023.5560
  37. Zhang Q, Li X, Ren L et al. (2023) OTX1 silencing suppresses ovarian cancer progression through inhibiting the JAK/STAT signaling. Tissue Cell 82:102082. https://doi.org/10.1016/j.tice.2023.102082
  38. Zhao Y, Hu Y, Shen Q et al. (2020) CircRNA_MYLK promotes malignant progression of ovarian cancer through regulating microRNA-652. Eur Rev Med Pharmacol Sci 24:5281–5291. https://doi.org/10.26355/eurrev_202005_21310
  39. Zhou J, Dong ZN, Qiu BQ et al. (2020) CircRNA FGFR3 induces epithelial-mesenchymal transition of ovarian cancer by regulating miR-29a-3p/E2F1 axis. Aging (Albany NY) 12:14080–14091. https://doi.org/10.18632/aging.103388
  40. Zhou Y, Zeng P, Li YH et al. (2016) SRAMP: Prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res 44:e91. https://doi.org/10.1093/nar/gkw104
  41. Zou FW, Tang YF, Li X et al. (2024) circ_SMA4 promotes gastrointestinal stromal tumors malignant progression by sponging miR-494-3p/KIT axis and activating JAK/STAT pathway. Sci Rep 14:22004. https://doi.org/10.1038/s41598-024-73393-w
Language: English
Submitted on: Jul 15, 2025
|
Accepted on: Nov 28, 2025
|
Published on: Feb 11, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Chengju Zhang, Tiantian Feng, Hu Wang, Deng He, Xi Wang, Shangqi Ni, Yuesong Wang, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.