References
- Bagratuni T, Mavrianou N, Gavalas NG et al. (2020) JQ1 inhibits tumour growth in combination with cisplatin and suppresses JAK/STAT signalling pathway in ovarian cancer. Eur J Cancer 126:125–135.
https://doi.org/10.1016/j.ejca.2019.11.017 - Cai X, Li X, Zhang M et al. (2025) RBM15 promotes lipogenesis and malignancy in gastric cancer by regulating N6-methyladenosine modification of ACLY mRNA in an IGF2BP2-dependent manner. Biochim Biophys Acta Mol Cell Biol Lipids 1870:159580.
https://doi.org/10.1016/j.bbalip.2024.159580 - Chardin L, Leary A (2021) Immunotherapy in ovarian cancer: Thinking beyond PD-1/PD-L1. Front Oncol 11:795547.
https://doi.org/10.3389/fonc.2021.795547 - Chen L, Shan G (2021) CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Lett 505:49–57.
https://doi.org/10.1016/j.canlet.2021.02.004 - Chen M, Wang S (2024) Preclinical development and clinical studies of targeted JAK/STAT combined Anti-PD-1/PD-L1 therapy. Int Immunopharmacol 130:111717.
https://doi.org/10.1016/j.intimp.2024.111717 - Deng X, Sun X, Hu Z et al. (2023) Exploring the role of m6A methylation regulators in glioblastoma multiforme and their impact on the tumor immune microenvironment. FASEB J 37:e23155.
https://doi.org/10.1096/fj.202301343 - Dong H, Zhang H, Mao X et al. (2023) RBM15 promates the proliferation, migration and invasion of pancreatic cancer cell lines. Cancers 15:1084.
https://doi.org/10.3390/cancers15041084 - Dudekula DB, Panda AC, Grammatikakis I et al. (2016) CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13:34–42.
https://doi.org/10.1080/15476286.2015.1128065 - Erdogan F, Radu TB, Orlova A et al. (2022) JAK-STAT core cancer pathway: An integrative cancer interactome analysis. J Cell Mol Med 26:2049–2062.
https://doi.org/10.1111/jcmm.17228 - Groner B, von Manstein V (2017) JAK STAT signaling and cancer: Opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol 451:1–14.
https://doi.org/10.1016/j.mce.2017.05.033 - Hu Q, Bian Q, Rong D et al. (2023) JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol 11:1110765.
https://doi.org/10.3389/fbioe.2023.1110765 - Hu X, Li J, Fu M et al. (2021) The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct Target Ther 6:402.
https://doi.org/10.1038/s41392-021-00791-1 - Jiang X, Liu B, Nie Z et al. (2021) The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6:74.
https://doi.org/10.1038/s41392-020-00450-x - Kuroki L, Guntupalli SR (2020) Treatment of epithelial ovarian cancer. BMJ 371:m3773.
https://doi.org/10.1136/bmj.m3773 - Li H, Lin R, Zhang Y et al. (2024) N6-methyladenosine-modified circPLPP4 sustains cisplatin resistance in ovarian cancer cells via PIK3R1 upregulation. Mol Cancer 23:5.
https://doi.org/10.1186/s12943-023-01917-5 - Li JH, Liu S, Zhou H et al. (2014) starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97.
https://doi.org/10.1093/nar/gkt1248 - Li H, Li Y, Zheng X et al. (2025) RBM15 facilitates osimertinib resistance of lung adenocarcinoma through m6A-dependent epigenetic silencing of SPOCK1. Oncogene 44:307–321.
https://doi.org/10.1038/s41388-024-03220-z - Lin CF, Lin CM, Lee KY et al. (2017) Escape from IFN-gamma-dependent immunosurveillance in tumorigenesis. J Biomed Sci 24:10.
https://doi.org/10.1186/s12929-017-0317-0 - Liu C, Yin Q, Wu Z et al. (2025) Inflammation and immune escape in ovarian cancer: Pathways and therapeutic opportunities. J Inflamm Res 18:895–909.
https://doi.org/10.2147/JIR.S503479 - Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408.
https://doi.org/10.1006/meth.2001.1262 - Miao Z, Li J, Wang Y et al. (2023) Hsa_circ_0136666 stimulates gastric cancer progression and tumor immune escape by regulating the miR-375/PRKDC Axis and PD-L1 phosphorylation. Mol Cancer 22:205.
https://doi.org/10.1186/s12943-023-01883-y - Morand S, Devanaboyina M, Staats H et al. (2021) Ovarian cancer immunotherapy and personalized medicine. Int J Mol Sci 22:6532.
https://doi.org/10.3390/ijms22126532 - Park SH, Ju JS, Woo H et al. (2024) The m(6)A writer RBM15 drives the growth of triple-negative breast cancer cells through the stimulation of serine and glycine metabolism. Exp Mol Med 56:1373–1387.
https://doi.org/10.1038/s12276-024-01235-w - Peng Z, Li M, Li H et al. (2023) PD-1/PD-L1 immune checkpoint blockade in ovarian cancer: Dilemmas and opportunities. Drug Discov Today 28:103666.
https://doi.org/10.1016/j.drudis.2023.103666 - Rah B, Rather RA, Bhat GR et al. (2022) JAK/STAT signaling: Molecular targets, therapeutic opportunities, and limitations of targeted inhibitions in solid malignancies. Front Pharmacol 13:821344.
https://doi.org/10.3389/fphar.2022.821344 - Shi R, Zhao R, Shen Y et al. (2024) IGF2BP2-modified circular RNA circCHD7 promotes endometrial cancer progression via stabilizing PDGFRB and activating JAK/STAT signaling pathway. Cancer Gene Ther 31:1221–1236.
https://doi.org/10.1038/s41417-024-00781-9 - Song Y, Wu Q (2023) RBM15 m(6) A modification-mediated OTUB2 upregulation promotes cervical cancer progression via the AKT/mTOR signaling. Environ Toxicol 38:2155–2164.
https://doi.org/10.1002/tox.23852 - Stewart C, Ralyea C, Lockwood S (2019) Ovarian cancer: An integrated review. Semin Oncol Nurs 35:151–156.
https://doi.org/10.1016/j.soncn.2019.02.001 - Tian Q, Mu Q, Liu S et al. (2023) m6A-modified circASXL1 promotes proliferation and migration of ovarian cancer through the miR-320d/RACGAP1 axis. Carcinogenesis 44:859–870.
https://doi.org/10.1093/carcin/bgad066 - Wang H, Cao Y, Zhang L et al. (2025) RBM15 drives breast cancer cell progression and immune escape via m6A-dependent stabilization of KPNA2 mRNA. Clin Breast Cancer 25:96–107.
https://doi.org/10.1016/j.clbc.2024.09.006 - Wang X, Tian L, Li Y et al. (2021) RBM15 facilitates laryngeal squamous cell carcinoma progression by regulating TMBIM6 stability through IGF2BP3 dependent. J Exp Clin Cancer Res 40:80.
https://doi.org/10.1186/s13046-021-01871-4 - Wang R, Ye H, Yang B et al. (2023) m6A-modified circNFIX promotes ovarian cancer progression and immune escape via activating IL-6R/JAK1/STAT3 signaling by sponging miR-647. Int Immunopharmacol 124(Pt A):110879.
https://doi.org/10.1016/j.intimp.2023.110879 - Webb PM, Jordan SJ (2024) Global epidemiology of epithelial ovarian cancer. Nat Rev Clin Oncol 21:389–400.
https://doi.org/10.1038/s41571-024-00881-3 - Xue C, Yao Q, Gu X et al. (2023) Evolving cognition of the JAK-STAT signaling pathway: Autoimmune disorders and cancer. Signal Transduct Target Ther 8:204.
https://doi.org/10.1038/s41392-023-01468-7 - Xu X, Li C, Zou J et al. (2023) MiR-34a targets SIRT1 to reduce 53 deacetylation and promote sevoflurane inhalation anesthesia-induced neuronal autophagy and apoptosis in neonatal mice. Exp Neurol 368:114482.
https://doi.org/10.1016/j.expneurol.2023.114482 - Yuan J, Guan W, Li X et al. (2023) RBM15 mediating MDR1 mRNA m(6)A methylation regulated by the TGF beta signaling pathway in paclitaxel resistant ovarian cancer. Int J Oncol 63:112.
https://doi.org/10.3892/ijo.2023.5560 - Zhang Q, Li X, Ren L et al. (2023) OTX1 silencing suppresses ovarian cancer progression through inhibiting the JAK/STAT signaling. Tissue Cell 82:102082.
https://doi.org/10.1016/j.tice.2023.102082 - Zhao Y, Hu Y, Shen Q et al. (2020) CircRNA_MYLK promotes malignant progression of ovarian cancer through regulating microRNA-652. Eur Rev Med Pharmacol Sci 24:5281–5291.
https://doi.org/10.26355/eurrev_202005_21310 - Zhou J, Dong ZN, Qiu BQ et al. (2020) CircRNA FGFR3 induces epithelial-mesenchymal transition of ovarian cancer by regulating miR-29a-3p/E2F1 axis. Aging (Albany NY) 12:14080–14091.
https://doi.org/10.18632/aging.103388 - Zhou Y, Zeng P, Li YH et al. (2016) SRAMP: Prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res 44:e91.
https://doi.org/10.1093/nar/gkw104 - Zou FW, Tang YF, Li X et al. (2024) circ_SMA4 promotes gastrointestinal stromal tumors malignant progression by sponging miR-494-3p/KIT axis and activating JAK/STAT pathway. Sci Rep 14:22004.
https://doi.org/10.1038/s41598-024-73393-w