Have a personal or library account? Click to login
Diphenyl Disulfide Exerts Dual Cytotoxic Effects by Inducing Ferroptosis and Apoptosis in Melanoma Cells Cover

Diphenyl Disulfide Exerts Dual Cytotoxic Effects by Inducing Ferroptosis and Apoptosis in Melanoma Cells

Open Access
|Dec 2025

References

  1. Almatroodi SA, Alsahli MA, Almatroudi A et al. (2019) Garlic and its active compounds: A potential candidate in the prevention of cancer by modulating various cell signalling pathways. Anticancer Agents Med Chem 19:1314–1324. https://doi.org/10.2174/1871520619666190409100955
  2. Battaglia AM, Sacco A, Perrotta ID et al. (2022) Iron administration overcomes resistance to erastin-mediated ferroptosis in ovarian cancer cells. Front Oncol 12:868351. https://doi.org/10.3389/fonc.2022.868351
  3. Castro MV, Barbero GA, Máscolo P et al. (2022) ROR2 increases the chemoresistance of melanoma by regulating p53 and Bcl2-family proteins via ERK hyperactivation. Cell Mol Biol Lett 27:23. https://doi.org/10.1186/s11658-022-00327-7
  4. Chen SY, Chiu CC, Hung CT et al. (2023) Diphenyl disulfide potentiates the apoptosis of breast cancer cells through Bax proteolytic activation with accompanying autophagy. Environ Toxicol 38:2022–2030. https://doi.org/10.1002/tox.23828
  5. Chen X, Comish PB, Tang D et al. (2021) Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol 9:637162. https://doi.org/10.3389/fcell.2021.637162
  6. Chen X, Tsvetkov AS, Shen HM et al. (2024) International consensus guidelines for the definition, detection, and interpretation of autophagy-dependent ferroptosis. Autophagy 20:1213–1246. https://doi.org/10.1080/15548627.2024.2319901
  7. Davies MA (2012) The role of the PI3K-AKT pathway in melanoma. Cancer J 18:142–147. https://doi.org/10.1097/PPO.0b013e31824d448c
  8. Dinter L, Karitzky PC, Schulz A et al. (2024) BRAF and MEK inhibitor combinations induce potent molecular and immunological effects in NRAS-mutant melanoma cells: Insights into mode of action and resistance mechanisms. Int J Cancer 154:1057–1072. https://doi.org/10.1002/ijc.34807
  9. Do Q, Zhang R, Hooper G et al. (2023) Differential contributions of distinct free radical peroxidation mechanisms to the induction of ferroptosis. JACS Au 3:1100–1117. https://doi.org/10.1021/jacsau.2c00681
  10. Hodi FS, Chiarion-Sileni V, Lewis KD et al. (2022) Long-term survival in advanced melanoma for patients treated with nivolumab plus ipilimumab in CheckMate 067. J Clin Oncol 40:9522. https://doi.org/10.1200/JCO.2022.40.16_suppl.9522
  11. Huang AC, Zappasodi R (2022) A decade of checkpoint blockade immunotherapy in melanoma: Understanding the molecular basis for immune sensitivity and resistance. Nat Immunol 23:660–670. https://doi.org/10.1038/s41590-022-01141-1
  12. Khorsandi K, Esfahani H, Ghamsari SK et al. (2023) Targeting ferroptosis in melanoma: Cancer therapeutics. Cell Commun Signal 21:337. https://doi.org/10.1186/s12964-023-01296-w
  13. Kocaturk NM, Akkoc Y, Kig C et al. (2019) Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci 134:116–137. https://doi.org/10.1016/j.ejps.2019.04.011
  14. Landsberg J, Kohlmeyer J, Renn M et al. (2012) Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490:412–416. https://doi.org/10.1038/nature11538
  15. Li M, Min JM, Cui JR et al. (2002) Z-ajoene induces apoptosis of HL-60 cells: Involvement of Bcl-2 cleavage. Nutr Cancer 42:241–247. https://doi.org/10.1207/S15327914NC422_14
  16. Liu J, Kuang F, Kroemer G et al. (2020) Autophagy-dependent ferroptosis: Machinery and regulation. Cell Chem Biol 27:420–435. https://doi.org/10.1016/j.chembiol.2020.02.005
  17. Long GV, Swetter SM, Menzies AM et al. (2023) Cutaneous melanoma. Lancet 402:485–502. https://doi.org/10.1016/S0140-6736(23)00821-8
  18. Meng Y, Zhou Q, Dian Y et al. (2025) Ferroptosis: A targetable vulnerability for melanoma treatment. J Invest Dermatol 145:1323–1344. https://doi.org/10.1016/j.jid.2024.11.007
  19. Ng MF, Simmons JL, Boyle GM (2022) Heterogeneity in melanoma. Cancers (Basel) 14:3030. https://doi.org/10.3390/cancers14123030
  20. Pillai R, Hayashi M, Zavitsanou AM et al. (2022) NRF2: KEAPing tumors protected. Cancer Discov 12:625–643. https://doi.org/10.1158/2159-8290.cd-21-0922
  21. Stockwell BR, Jiang X (2020) The chemistry and biology of ferroptosis. Cell Chem Biol 27:365–375. https://doi.org/10.1016/j.chembiol.2020.03.013
  22. Su H, Peng C, Liu Y (2024) Regulation of ferroptosis by PI3K/Akt signaling pathway: A promising therapeutic axis in cancer. Front Cell Dev Biol 12:1372330. https://doi.org/10.3389/fcell.2024.1372330
  23. Ta N, Jiang X, Zhang Y et al. (2023) Ferroptosis as a promising therapeutic strategy for melanoma. Front Pharmacol 14:1252567. https://doi.org/10.3389/fphar.2023.1252567
  24. Tsoi J, Robert L, Paraiso K et al. (2018) Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 33:890–904.e895. https://doi.org/10.1016/j.ccell.2018.03.017
  25. Ursini F, Maiorino M (2020) Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med 152:175–185. https://doi.org/10.1016/j.freeradbiomed.2020.02.027
  26. Wang J, Li S, Luo T et al. (2012) Disulfide linkage: A potent strategy in tumor-targeting drug discovery. Curr Med Chem 19:2976–2983. https://doi.org/10.2174/092986712800672030
  27. Wang Z, Shen N, Wang Z et al. (2024) TRIM3 facilitates ferroptosis in non-small cell lung cancer through promoting SLC7A11/xCT K11-linked ubiquitination and degradation. Cell Death Differ 31:53–64. https://doi.org/10.1038/s41418-023-01239-5
  28. Xiao M, Benoit A, Hasmim M et al. (2021) Targeting cytoprotective autophagy to enhance anticancer therapies. Front Oncol 11:626309. https://doi.org/10.3389/fonc.2021.626309
  29. Xu Z, Han X, Ou D et al. (2020) Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl Microbiol Biotechnol 104:575–587. https://doi.org/10.1007/s00253-019-0257-8
  30. Yamakawa S, Demizu A, Kawaratani Y et al. (2008) Growth inhibition of human colon cancer cell line HCT116 by bis[2-(acylamino) phenyl] disulfide and its action mechanism. Biol Pharm Bull 31:916–920. https://doi.org/10.1248/bpb.31.916
  31. Yang WS, Stockwell BR (2016) Ferroptosis: Death by lipid peroxidation. Trends Cell Biol 26:165–176. https://doi.org/10.1016/j.tcb.2015.10.014
  32. Zhang P, Wu J, Xiao F et al. (2018) Disulfide bond based polymeric drug carriers for cancer chemotherapy and relevant redox environments in mammals. Med Res Rev 38:1485–1510. https://doi.org/10.1002/med.21485
  33. Zheng X, Liu J, Hu W et al. (2024) Curcumin induces autophagy-mediated ferroptosis by targeting the PI3K/AKT/mTOR signaling pathway in gastric cancer. Turk J Gastroenterol 35:625–633. https://doi.org/10.5152/tjg.2024.23526
  34. Zhong J, Yan W, Wang C et al. (2022) BRAF inhibitor resistance in melanoma: Mechanisms and alternative therapeutic strategies. Curr Treat Options Oncol 23:1503–1521. https://doi.org/10.1007/s11864-022-01006-7
Language: English
Submitted on: Jun 20, 2025
Accepted on: Nov 6, 2025
Published on: Dec 20, 2025
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Sheng-Yuan Chen, En-De Shu, Jiann-Jyh Huang, Yen-Chun Chen, Sheng-Kai Hsu, Wen-Tsan Chang, I-Ling Lin, Chia-Hung Kuo, Ming-Fong Tsai, Zhi-Hong Wen, Chien-Chih Chiu, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.