Abdı, A., Bouamrane, A., Karech, T., Dahri, N., & Kaouachi, A. (2021). Landslide susceptibility mapping using GIS-based fuzzy logic and the analytical hierarchical processes approach: a case study in Constantine (North-East Algeria). Geotechnical and Geological Engineering, 39, 5675–5691. https://doi.org/10.1007/s10706-021-01855-3
Alcántara-Ayala, I. (2002). Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology, 47(2-4), 107–124. https://doi.org/10.1016/S0169-555X(02)00083-1
Arif, I., Hadji, R., Hamed, Y., Hamdi, N., Gentilucci, M., & Hajji, S. (2023). The geoenvironmental factors influencing slope failures in the Majerda basin, Algerian–Tunisian border. EuroMediterranean Journal for Environmental Integration, 9(3), 355–376. https://doi.org/10.1007/s41207-023-00423-w
Benouar, D. (1994). Materials for the investigation of the seismicity of Algeria and adjacent regions during the twentieth century. Annals of Geophysics, 37(4). https://doi.org/10.4401/ag-4466
Bouragba, N., Hadji, R., & Abdelmadjid, Ch. (2023). An AHP GISbased methodology for the stability assessment of the Djebel El Ouahch collapsees on the Numidian Flysch Formation in northeast Algeria’s Constantine region. Central European Journal of Geography and Sustainable Development, 5(2), 24–45. https://doi.org/10.47246/CEJGSD.2023.5.2.2
Bourenane, H., & Bouhadad, Y. (2021). Impact of land use changes on landslides occurrence in urban area: the case of the Constantine City (NE Algeria). Geotechnical and Geological Engineering, 39(6), 1–21. https://doi.org/10.1007/s10706-021-01768-1
Bourenane, H., Bouhadad, Y., Guettouche, M. S., & Braham, M. (2015). GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bulletin of Engineering Geology and the Environment, 74, 337–355. https://doi.org/10.1007/s10064-014-0616-6
Bourenane, H., Guettouche, M. S., Bouhadad, Y., & Braham, M. (2016). Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods. Arabian Journal of Geosciences, 9, 1–24.
Bui, D. T., Tsangaratos, P., Nguyen, V. T., Van Liem, N., & Trinh, P. T. (2020). Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena, 188, 104426. https://doi.org/10.1016/j.catena.2019.104426
Coiffait, P. E. (2012). Un bassin post-nappes dans son cadre structural: l’exemple du bassin de Constantine (Algérie nord-orientale) [doctoral dissertation]. Université Henri Poincaré Nancy.
Chettah, W., Mezhoud, S., Baadeche, M., & Hadji, R. (2024). Fuzzy logic-based landslide susceptibility mapping in earthquake-prone areas: a case study of the Mila Basin, Algeria. Russian Geology and Geophysics, 65(10), 1252–1270. https://doi.org/10.2113/RGG20244699
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W. Z., & JTC-1 Joint Technical Committee on Landslides and Engineered Slopes. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102(3–4), 85–98. https://doi.org/10.1016/j.enggeo.2008.03.022
Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics, 98, 239–267. https://doi.org/10.1007/s00703-007-0262-7
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Landslide Hazard Assessment in the Staffora Basin, Northern Italian Apennines. Geomorphology, 72, 272–299. https://doi.org/10.1016/j.geomorph.2005.06.002
Harbi, A. (2007). Seismicity, seismic input and site effects in the Sahel–Algiers region (North Algeria). Soil Dynamics and Earthquake Engineering, 27, 427–447. https://doi.org/10.1016/j.soildyn.2006.10.002
Harbi, A., Benouar, D., & Benhallou, H. (2003). Re-appraisal of seismicity and seismotectonics in the north-eastern Algeria Part I: Review of historical seismicity. Journal of Seismology, 7, 115–136. https://doi.org/10.1023/A:1021212015935
Ladjel, Z., Zahri, F., Hadji, R., & Hamed, Y. (2025). Probabilistic based rockfall risk assessment for a coastal cliff in Northern Algeria. Environmental Engineering and Management Journal, 24(1), 23–41. https://doi.org/10.30638/eemj.2025.003
Lee, S., & Pradhan, B. (2006). Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. Journal of Earth System Science, 115, 661–672. https://doi.org/10.1007/s12040-006-0004-0
Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., Avtar, R. & Abderrahmane, B. (2020). Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 207, 103225. https://doi.org/10.1016/j.earscirev.2020.103225
Mezhoud, L., & Benazzouz, M. T. (2018). Evaluation de la susceptibilité à l’aléa «glissement de terrain» par l’utilisation de l’outil SIG: Application à la ville de Constantine (Algérie). Sciences & Technologie. D, Sciences de la terre, 47, 91–103. https://revue.umc.edu.dz/d/article/view/2949
Mokrane, A., Aït Messaoud, A., Sébaï, A., Menia, N., Ayadi, A., & Bezzeghoud, M. (1994). Les séismes en Algérie de 1365 à 1992 [Earthquakes in Algeria from 1365 to 1992]. ESS/CRAAG.
Papathoma-Köhle, M., Neuhäuser, B., Ratzinger, K., Wenzel H., & Dominey-Howes, D. (2017). Elements at risk as a framework for assessing the vulnerability of communities to landslides. Natural Hazards and Earth System Sciences, 17(6), 765–779.
Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38, 301–320. https://doi.org/10.1007/s12524-010-0020-z
Saha, A. K., Gupta, R. P., & Arora, M. K. (2002). GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. International Journal of Remote Sensing, 23(2), 357–369. https://doi.org/10.1080/01431160010014260
Samy, M., Besma, M., Saber, M., & Sami, Z. (2019, December 9–10). Cartographie géotechnique, des risques de gonflement des argiles dans la Wilaya de Mila. 1st International Congress on Advances in Geotechnical Engineering and Construction Management ICAGECM, Skikda, Algeria.
Taib, H., Hadji, R., & Zighmi, K. (2025). Geospatial analysis of neotectonics in the Jebel Gustar Mountain northeastern Algeria. Journal of Mountain Science, 22, 391–403. https://doi.org/10.1007/s11629-024-9170-2
Van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3–4), 112–131. https://doi.org/10.1016/j.enggeo.2008.03.010
Wisner, B., Blaikie, P., Cannon, T. & Davis, I. (2004). At risk: natural hazards, people’s vulnerability and disasters. Routledge. https://www.preventionweb.net/files/670_72351.pdf
Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena, 72(1), 1–12. https://doi.org/10.1016/j.catena.2007.01.003