Have a personal or library account? Click to login
A new approach for assessing landslide vulnerability at the urban scale: the case of the city of Constantine, Algeria Cover

A new approach for assessing landslide vulnerability at the urban scale: the case of the city of Constantine, Algeria

By: Mohamed Bouaoud and  Samy Mezhoud  
Open Access
|Sep 2025

References

  1. Abdı, A., Bouamrane, A., Karech, T., Dahri, N., & Kaouachi, A. (2021). Landslide susceptibility mapping using GIS-based fuzzy logic and the analytical hierarchical processes approach: a case study in Constantine (North-East Algeria). Geotechnical and Geological Engineering, 39, 5675–5691. https://doi.org/10.1007/s10706-021-01855-3
  2. Alcántara-Ayala, I. (2002). Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology, 47(2-4), 107–124. https://doi.org/10.1016/S0169-555X(02)00083-1
  3. ARCADIS-Simecsol, EEG & CTC (2001–2004). Étude de la vulnérabilité aux risques naturels à Constantine.
  4. Arif, I., Hadji, R., Hamed, Y., Hamdi, N., Gentilucci, M., & Hajji, S. (2023). The geoenvironmental factors influencing slope failures in the Majerda basin, Algerian–Tunisian border. EuroMediterranean Journal for Environmental Integration, 9(3), 355–376. https://doi.org/10.1007/s41207-023-00423-w
  5. Benouar, D. (1994). Materials for the investigation of the seismicity of Algeria and adjacent regions during the twentieth century. Annals of Geophysics, 37(4). https://doi.org/10.4401/ag-4466
  6. Bezzeghoud, M., Buforn, E., & Udías, A. (1996). Seismicity and tectonics in the Mediterranean region. Tectonophysics, 261(1–3), 1–12.
  7. Birkmann, J. (Ed.) (2006). Measuring vulnerability to natural hazards. United Nations University Press.
  8. Bouragba, N., Hadji, R., & Abdelmadjid, Ch. (2023). An AHP GISbased methodology for the stability assessment of the Djebel El Ouahch collapsees on the Numidian Flysch Formation in northeast Algeria’s Constantine region. Central European Journal of Geography and Sustainable Development, 5(2), 24–45. https://doi.org/10.47246/CEJGSD.2023.5.2.2
  9. Bourenane, H., & Bouhadad, Y. (2021). Impact of land use changes on landslides occurrence in urban area: the case of the Constantine City (NE Algeria). Geotechnical and Geological Engineering, 39(6), 1–21. https://doi.org/10.1007/s10706-021-01768-1
  10. Bourenane, H., Bouhadad, Y., Guettouche, M. S., & Braham, M. (2015). GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bulletin of Engineering Geology and the Environment, 74, 337–355. https://doi.org/10.1007/s10064-014-0616-6
  11. Bourenane, H., Guettouche, M. S., Bouhadad, Y., & Braham, M. (2016). Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods. Arabian Journal of Geosciences, 9, 1–24.
  12. Bui, D. T., Tsangaratos, P., Nguyen, V. T., Van Liem, N., & Trinh, P. T. (2020). Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena, 188, 104426. https://doi.org/10.1016/j.catena.2019.104426
  13. Coiffait, P. E. (2012). Un bassin post-nappes dans son cadre structural: l’exemple du bassin de Constantine (Algérie nord-orientale) [doctoral dissertation]. Université Henri Poincaré Nancy.
  14. Chettah, W., Mezhoud, S., Baadeche, M., & Hadji, R. (2024). Fuzzy logic-based landslide susceptibility mapping in earthquake-prone areas: a case study of the Mila Basin, Algeria. Russian Geology and Geophysics, 65(10), 1252–1270. https://doi.org/10.2113/RGG20244699
  15. Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W. Z., & JTC-1 Joint Technical Committee on Landslides and Engineered Slopes. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102(3–4), 85–98. https://doi.org/10.1016/j.enggeo.2008.03.022
  16. Glade, T. (2003). Vulnerability assessment in landslide risk analysis. Die Erde, 134(2), 123–146.
  17. Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics, 98, 239–267. https://doi.org/10.1007/s00703-007-0262-7
  18. Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Landslide Hazard Assessment in the Staffora Basin, Northern Italian Apennines. Geomorphology, 72, 272–299. https://doi.org/10.1016/j.geomorph.2005.06.002
  19. Harbi, A. (2001). Analyse de la sismicité et mise en évidence d’accidents actifs dans le NordEst Algérien [master thesis]. USTHB.
  20. Harbi, A. (2007). Seismicity, seismic input and site effects in the Sahel–Algiers region (North Algeria). Soil Dynamics and Earthquake Engineering, 27, 427–447. https://doi.org/10.1016/j.soildyn.2006.10.002
  21. Harbi, A., Benouar, D., & Benhallou, H. (2003). Re-appraisal of seismicity and seismotectonics in the north-eastern Algeria Part I: Review of historical seismicity. Journal of Seismology, 7, 115–136. https://doi.org/10.1023/A:1021212015935
  22. Ladjel, Z., Zahri, F., Hadji, R., & Hamed, Y. (2025). Probabilistic based rockfall risk assessment for a coastal cliff in Northern Algeria. Environmental Engineering and Management Journal, 24(1), 23–41. https://doi.org/10.30638/eemj.2025.003
  23. Lee, S., & Pradhan, B. (2006). Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. Journal of Earth System Science, 115, 661–672. https://doi.org/10.1007/s12040-006-0004-0
  24. Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., Avtar, R. & Abderrahmane, B. (2020). Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 207, 103225. https://doi.org/10.1016/j.earscirev.2020.103225
  25. Mezhoud, L., & Benazzouz, M. T. (2018). Evaluation de la susceptibilité à l’aléa «glissement de terrain» par l’utilisation de l’outil SIG: Application à la ville de Constantine (Algérie). Sciences & Technologie. D, Sciences de la terre, 47, 91–103. https://revue.umc.edu.dz/d/article/view/2949
  26. Mokrane, A., Aït Messaoud, A., Sébaï, A., Menia, N., Ayadi, A., & Bezzeghoud, M. (1994). Les séismes en Algérie de 1365 à 1992 [Earthquakes in Algeria from 1365 to 1992]. ESS/CRAAG.
  27. Office National de la Météorologie [ONM]. (2024). Données de précipitations de constantine (1975–2017).
  28. Papathoma-Köhle, M., Neuhäuser, B., Ratzinger, K., Wenzel H., & Dominey-Howes, D. (2017). Elements at risk as a framework for assessing the vulnerability of communities to landslides. Natural Hazards and Earth System Sciences, 17(6), 765–779.
  29. Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38, 301–320. https://doi.org/10.1007/s12524-010-0020-z
  30. Saha, A. K., Gupta, R. P., & Arora, M. K. (2002). GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. International Journal of Remote Sensing, 23(2), 357–369. https://doi.org/10.1080/01431160010014260
  31. Samy, M., Besma, M., Saber, M., & Sami, Z. (2019, December 9–10). Cartographie géotechnique, des risques de gonflement des argiles dans la Wilaya de Mila. 1st International Congress on Advances in Geotechnical Engineering and Construction Management ICAGECM, Skikda, Algeria.
  32. Taib, H., Hadji, R., & Zighmi, K. (2025). Geospatial analysis of neotectonics in the Jebel Gustar Mountain northeastern Algeria. Journal of Mountain Science, 22, 391–403. https://doi.org/10.1007/s11629-024-9170-2
  33. USTHB-FST-GAT-DUC Constantine. (2002). Levé géologique.
  34. Van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3–4), 112–131. https://doi.org/10.1016/j.enggeo.2008.03.010
  35. Wisner, B., Blaikie, P., Cannon, T. & Davis, I. (2004). At risk: natural hazards, people’s vulnerability and disasters. Routledge. https://www.preventionweb.net/files/670_72351.pdf
  36. Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena, 72(1), 1–12. https://doi.org/10.1016/j.catena.2007.01.003
DOI: https://doi.org/10.22630/srees.10432 | Journal eISSN: 2543-7496 | Journal ISSN: 1732-9353
Language: English
Page range: 241 - 260
Submitted on: May 7, 2025
Accepted on: Jul 21, 2025
Published on: Sep 30, 2025
Published by: Warsaw University of Life Sciences - SGGW Press
In partnership with: Paradigm Publishing Services

© 2025 Mohamed Bouaoud, Samy Mezhoud, published by Warsaw University of Life Sciences - SGGW Press
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.