Have a personal or library account? Click to login

Investigation on Photoelectric Theodolite data Processing and Random Errors Model

By:
Open Access
|Nov 2017

References

  1. Yao Q, Brockwell P, “Gaussian maximum likelihood estimation for ARMA models II: spatial processes”, Bernoulli, Vol.12, No.3, 2006, pp. 403-429.10.3150/bj/1151525128
  2. Krishna, Ramuhalli, “Improved pointing accuracy using high-precision theodolite measurements”, SPIE, Vol.2818, 1998, No.1, pp.199-209.
  3. Wang Jianli, Chen Tao, Qi Chen qne Fang Zhonghua, “Method to improve the capability of electro-optical theodolite to track fast-moving target”, SPIE, Vol. 4564, No.1, 2003, pp. 238-244.
  4. LIU Chanlao, “The research on dynamic tracking and measurement and its computer simulation in shooting range”, Vol.13, No.3, 2001, pp. 455-479.
  5. H.J.Tiziani, “High precision optical measurement methods”, SPIE, Vo1.2248, No.1, 1996, pp.2-18.
  6. C. J. Stone, “Consistent nonparametric regression”, The Annals of Statistics, Vo1.17, No.5, 1977, pp.595-645.10.1214/aos/1176343886
  7. KlEIN L A, “Sensor and data fusion concepts and applications”, SPIE, Optical Engineering Press, Vo1.1848, No.1, 1993, pp.364-389.
  8. W.S.Cleveland, “Robust locally weighted regression and smoothing scatter plots”, Journal of American Statistical Association, Vo1.74, No.2, 1979, pp.829-836.10.1080/01621459.1979.10481038
  9. Hallin M, Lu Z, Tran L.T, “Local linear spatial regression”, Annals of Statistics, Vol.32, No.6, 2004, pp.356-378.10.1214/009053604000000850
  10. Lee L F, “Consistency and efficiency of least squares estimation for mixed regressive”, Spatial Autoregressive Models, Econometric Theory, Vol.18, No.1, 2002, pp.252–277.10.1017/S0266466602182028
  11. E. Masry, J. Fan, “Local polynomial estimation of regression functions for mixing processes”, Scandinavian Journal of Statistics, Vol.24, No.3, 1997, pp.165-179.10.1111/1467-9469.00056
  12. J.Fan,, I.Gijbels, “Local polynomial modelling and its applications”, Chapman& Hall. London, 1996, pp.196-210.
  13. H.Shen, L.Brown, “Nonparametric modelling for time-varying customer service times at a bank call center”, Appl Stoch Models Bus Ind, Vol.22, No.6, 2006, pp.297-311.10.1002/asmb.618
  14. Cliff A, Ord J K, “Spatial processes: models& applications”, London: Pion, pp.1-131, January 1981.
  15. L.Wang, L. Brown, T.Cai, M.Levine, “Effect of mean on variance function estimation in nonparametric regression. Technical report”, Dept. Statistics, Univ. Pennsylvania, Available at:www-stat. wharton. upenn. edu/tcai/paper/html/Variance-Estimation.Html, 2006.
  16. P.Hall, R.Carroll, “Variance function estimation in regression: the effect of estimating the mean”, J. Roy. Statist. Soc. Ser. B, Vol.51, 2006, No.2, pp.3-14.
  17. P.Hall, J.Kay, D.Titterington, “Asymptotically optimal difference-based estimation of variance in nonparametric regression”, Biometrika, Vol.77, No.3, 2006, pp.521-528.10.1093/biomet/77.3.521
  18. S.C.Mukhopadhyay, F.P. Dawson, M. Iwahara and S. Yamada, “A Novel Compact Magnetic Current Limiter for Three Phase Applications”, IEEE Transactions on Magnetics, Vol. 36, No. 5, pp. 3568-3570, September 2000.
  19. Delaigle A,Fan J,Carroll R J,”A design-adaptive local polynomial estimator for the errors-in-variables problem”, Amer.Statist.Assoc,Vol.104 , No.1, 2009, pp. 348–359.10.1198/jasa.2009.0114284638020351800
  20. Comte F, Taupin M L, “Nonparametric estimation of the regression function in an errors-in-variables model”, Statist.Sinica, Vol.17, No.3, 2007, pp.1065–1090.
  21. 21Meister Alexander, “Deconvolution problems in nonparametric statistics”, Lecture Notes in Statistics, Springer, Berlin, Heidelberg, 2009, pp.5-138.10.1007/978-3-540-87557-4
  22. S.C.Mukhopadhyay, K. Chomsuwan, C. Gooneratne and S. Yamada, “A Novel Needle-Type SV-GMR Sensor for Biomedical Applications”, IEEE Sensors Journal, Vol. 7, No. 3, pp. 401-408, March 2007.10.1109/JSEN.2007.891929
  23. J. Fan, T. Gasser, I. Gijbels, M. Brockmann and J. Engel, “Local polynomial fitting: optimal kernel and asymptotic minimax efficiency”, Annals of the Institute of Statistical Mathematics, Vol.49, No.2, 1996, pp.79-99.10.1023/A:1003162622169
  24. Masry E., “Deconvolving multivariate kernel density estimates from contaminated associated observations”, IEEE Trans. Inform. Theory, Vol.49. No.11, 2003, pp.2941–2952.10.1109/TIT.2003.818415
  25. Wu W B, Mielniczuk J, “Kernel density estimation for linear processes”, Ann. Statist.,Vol.30, No.5, 2002, pp.1441–1459.10.1214/aos/1035844982
  26. Fan J, Truong Y K, “Nonparametric regression with errors in variables”, Ann. Statist.,Vol.21, No.4, 1993, pp.1900–1925.10.1214/aos/1176349402
  27. K. Muthumeenakshi and S. Radha, “Optimal techniques for sensing error minimization with improved energy detection in cognitive radios”, International Journal on Smart Sensing and Intelligent Systems, Vol 7, No. 4, December 2014, pp. 2014-2034.10.21307/ijssis-2017-745
  28. S. Yamada, K. Chomsuwan, S.C.Mukhopadhyay, M. Iwahara, M. Kakikawa and I. Nagano, “Detection of Magnetic Fluid Volume Density with a GMR Sensor”, Journal of Magnetics Society of Japan, Vol. 31, No. 2, pp. 44-47, 2007.10.3379/jmsjmag.31.44
  29. Mielniczuk J, Wu W B, “On random-design model with dependent errors”, Statist. Sinica.,Vol. 14, No.4, 2004, pp.1105–1126.
  30. Kulik R., “Nonparametric deconvolution problem for dependent sequences”, Electron. J.Statist., Vol. 2, No.3, 2008, pp.722–740.10.1214/07-EJS154
  31. Biswajit Panja, Zachary Scott and Priyanka Meharia, “Security of wireless sensor networks for health monitoring helmets with anomaly detection using power analysis and probabilistic model”, International Journal on Smart Sensing and Intelligent Systems, Vol 8, No. 1, March 2015, pp. 561-580.
Language: English
Page range: 1180 - 1202
Submitted on: Jan 26, 2015
Accepted on: Apr 18, 2015
Published on: Nov 20, 2017
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2017 Xiang Hua, Jinjin Zhang, Bin Lei, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.