References
- Abarca-Grau A.M., Burbank L.P., Paz H.D., Crespo-Rivas J.C., Marco-Noales E., López M.M., Vinardell J.M., Bodman S.B., Penyalver R.: Role for Rhizobium rhizogenes K84 Cell envelope polysaccharides in surface interactions. Appl. Environ. Microbiol. 78, 1644–1651 (2012)
- Akoğlu A., Karahan A.G., Çakmakçı M.L., Çakır I.: Properties of bacterial cellulose and usage in food industry. GIDA/J. Food. 35, 127–134 (2010)
- Arrieta M.P., Fortunati E., Dominici F., Rayón E., López J., Kenny J.M.: PLA-PHB/Cellulose based films: mechanical, barrier and disintegration properties. Polym. Degrad. Stabil. 107, 139–149 (2014)
- Augimeri R.V., Varley A.J., Strap J.L.: Establishing a role for bacterial cellulose in environmental interactions: Lessons learned from diverse biofilm-producing. Proteobacteria Front. Microbiol. 6, 1282 (2015)
- Bae S.O., Shoda M.: Bacterial cellulose production by fedbatch fermentation in molasses medium. Biotechnol. Prog. 20, 1366–1371 (2004)
- Bae S.O., Shoda M.: Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl. Microbiol. Biotechnol. 67, 45–51 (2005)
- Bielecki S., Kalinowska H.: Biotechnologiczne nanomateriały. Post. Mikrobiol. 47, 163–169 (2008)
- Borzani W., Souza S.J.: Mechanism of the film thickness increasing during the bacterial production of cellulose on nonagitated liquid media. Biotechnol. Lett. 17, 1271–1272 (1995)
- Brand M.T., Carter M.Q., Parker C.T., Chapman M.R., Huynh S., Zhou Y.: Salmonella biofilm formation on Aspergillus niger involves cellulose – chitin interactions. PLoS One, 6, e25553 (2011)
- Budhiono A., Rosidia B., Taher H., Iguchi M.: Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system, Carbohyd. Polym. 40, 137–143 (1999)
- Cakar F., Ozer I., Aytekin A.Ö., Sahin F.: Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr. Polym. 15, 106, 7–13 (2014)
- Cheng K.C., Catchmark J.M., Demirci A.: Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J. Biol. Eng. 3 (2009)
- Cheng K.C., Catchmark J.M., Demirci A.: Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules, 14, 730–736 (2011)
- Correa M.J., Añón M.C., Pérez G.T., Ferrero C.: Effect of modified celluloses on dough rheology and microstructure. Food Res. Int. 43, 780–787 (2010)
- Costa A.F.S., Almeida F.C.G., Vinhas G.M., Sarubbo L.A.: Production of bacterial cellulose by Gluconacetobacter hansenii using Corn Steep Liquor as nutrient sources. Front. Microbiol. 8, 2027 (2017)
- Cowles K.N., Willis D.K., Engel T.N., Jones J.B., Barak JD.: Diguanylate cyclases AdrA and STM1987 regulate Salmonella enterica exopolysaccharide production during plant colonization in an environment-eependent manner. Appl. Environ. Microbiol. 15, 1237–1248 (2016)
- Darch R., Harrison J., Rashid M.: Sarcina ventriculi bacteria in stomach and duodenum of a patient with gastrooesophageal obstruction by Adenocarcinoma. J. Univers. Surg. 4, 46, 1–3 (2016)
- Das R., Panda A.B., Pal S.: Synthesis and characterization of a novel polymeric hydrogel based on hydroxypropyl methyl cellulose grafted with polyacrylamide. Cellulose, 19, 933–945 (2012)
- Devinder D., Mona M., Hradesh R., Patil R.T.: Dietary fibre in foods: a review. J. Food Sci. Technol. 49, 255–266 (2012)
- Dourado F., Gama M., Rodrigues A.C.: A review on the toxicology and dietetic role of bacterial cellulose. Toxicol. Rep. 4, 543–553 (2017)
- Du J., Vepachedu V., Cho S.H., Kumar M., Nixon B.T.: Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution. PLoS One, 11, e0155886 (2016)
- Esa F., Tasirin S.M., Rahma N.: Overview of bacterial cellulose production and application. Agric. Agric. Sci. Procedia. 2, 113–119 (2014)
- Farag S., Asker M.M.S., Mahmoud M.G., Ibrahim H., Amr A.: Comparative study for bacterial cellulose production using egyptian Achromobacter sp. Res. J. Pharm. Biol. Chem. Sci. 7, 954–970 (2016)
- Gayathry G., Gopalaswamy G.: Production and characterization of microbial cellulosic fibre from Acetobacter xylinum. Indian J. Fibre Text. Res. 39, 93–96 (2014)
- George J., Ramana K.V., Sabapathy S.N., Bawa A.S.: Physico-mechanical properties of chemically treated bacterial (Acetobacter xylinum) cellulose membrane. World J. Microbiol. Biotechnol. 21, 1323–1327 (2005)
- Heindl J.E., Yi W., Heckel B.C., Mohari B., Feirer N., Fuqua C.: Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium. Front. Plant Sci. 5, 176–180 (2014)
- Hornung M.L., Gerrard A.M., Schmauder H.P.: Optimizing the production of bacterial cellulose in surface culture: Evaluation of substrate mass transfer influences on the bioreaction (Part 1), Eng. Life Sci. 6, 537–545 (2006)
- Hornung M.L, Schmauder H.P.: Optimizing the production of bacterial cellulose in surface culture: A novel aerosol bioreactor working on a fed batch principle (Part 3). Eng. Life Sci. 7, 35–41 (2007)
- Hsieh J.T., Wang M.J., Lai J.T, Liu H.S.: A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. J. Taiwan Inst. Chem. E. 63, 46–51 (2016)
- Huang C., Guo H.J., Xiong L., Wang B., Shi S.L., Chen X.F., Lin X.Q., Wang C., Luo J., Chen X.D.: Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr. Polym. 20, 136, 198–202 (2016)
- Huang C., Yang X.Y., Xiong L., Guo H.J., Luo J., Wang B., Zhang H.R., Lin X.Q., Chen X.D.: Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett. Appl. Microbiol. 60, 491–496 (2015)
- Huang Y., Zhu C., Yang J., Nie Y., Chen C., et al.: Recent advances in bacterial cellulose. Cellulose, 21, 1–30 (2014)
- Hungund B.S., Gupta S.G.: Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World. J. Microb. Biot. 26, 1823–1828 (2010)
- Hyun J.Y., Mahanty B., Kim C.G.: Utilization of makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus. Appl. Biochem. Biotechnol. 172, 3748–3760 (2014)
- Islam M.U., Ullah M.W., Khan S., Shah N., Park J.K.: Strategies for cost-effective and enhanced production of bacterial cellulose. Int. J. Biol. Macromol. 102, 1166–1173 (2017)
- Jahn C.E., Selimi D.A., Barak J.D., Charkowski A.O.: The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operon. Microbiology, 157, 2733–2744 (2011)
- Jessa J., Hozyasz K.K.: Wartość zdrowotna produktów kokosowych (Health value of coconut products). Pediatr. Pol. 90, 415–423, (2015)
- Ji K., Wang W., Zeng B., Chen S., Zhao Q., Chen Y., Li G., Ma T.: Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07. Sci. Rep. 6, 21863 (2016)
- Juda S.N., Nugraha S., Nugraha D. A.: Development of nata de coco with natural dyes using value engineering method. The 3rd International Conference on Agro-Industry 2016 “Competitive & Sustainable Agro-Industry”, 96–109 (2016)
- Jung H., Ha O., Shehzad S., Khan S., Yong L.J., Won P.T., Khan J., Kon P.: Production of bacterial cellulose by a static cultivation using the waste from beer culture broth. Korean J. Chem. Eng. 25, 812 (2008)
- Jung H.I., Jeong J.H., Lee O.M., Park G.T., Kim K.K., Park H.C., Lee S.M., Kim Y.G., Son H.J.: Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresour. Technol. 101, 3602–3608 (2010)
- Jung H.I., Lee O.M., Jeong J.H., Jeon Y.D., Park K.H., Kim H.S., An W.G., Son H.J.: Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium. Appl. Biochem. Biotechnol. 162, 486–497 (2010)
- Keshk S.M.: Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate. Enzyme Microb. Tech. 40, 9–12 (2006)
- Keshk S.M., Razek T.M., Sameshima K.: Bacterial cellulose production from beet molasses. Afr. J. Biotechnol. 5, 1519–1523 (2006)
- Kim S.Y., Kim J.N., Wee Y.J., Park D.H., Ryu H.W.: Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar. Appl. Biochem. Biotechnol. 129, 705–715 (2006)
- Kimbrough T.G., Miller S.I.: Assembly of the type III secretion needle complex of Salmonella typhimurium. Microbes. Infect. 4, 75–82 (2002)
- Kiziltas E.E., Kiziltas A., Gardnera D.J.: Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr. Polym. 124, 131–138 (2015)
- Kubiak K., Kalinowska H., Peplińska M., Bielecki S.: Celuloza bakteryjna jako bionanomateriał. Post. Biol. Komórki, 36, 85–98 (2009)
- Lima E.B., Sousa C.N., Meneses L.N., Ximenes N.C., Santos M.A., Vasconcelos G.S., Lima N.B., Patrocínio M.C., Macedo D., Vasconcelos S.M.: Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review. Braz. J. Med. Biol. Res. 48, 953–964 (2015)
- Lin D., Lopez-Sanchez P., Li R., Li Z.: Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour. Technol. 151, 113–119 (2014)
- Lin S.P. i wsp.: Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20, 2191–2218 (2013)
- Lin S.B., Chen L.C., Chen H.H.: Physical characteristics of surimi and bacterial cellulose composite gel. J. Food Process Eng. 34, 1363–1379 (2011)
- Luo M.T., Huang C., Chen X.F., Huang Q.L., Qi G.X., Tian L.L., Xiong L., Li H.L., Chen X.D.: Efficient bioconversion from acid hydrolysate of waste oleaginous yeast biomass after microbial oil extraction to bacterial cellulose by Komagataeibacter xylinus. Prep. Biochem. Biotechnol. 47, 1025–1031 (2017)
- Luo M.T., Zhao C., Huang C., Chen X.F., Huang Q.L., Qi G.X., Tian L.L., Xiong L., Li H.L., Chen X.D.: Efficient using Durian shell hydrolysate as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus. Indian J. Microbiol. 57, 393–399 (2017)
- Ma T., Ji K., Wang W., Wang J., Li Z., Ran H., Liu B., Li G.: Cellulose synthesized by Enterobacter sp. FY-07 under aerobic and anaerobic conditions. Bioresour. Technol. 126, 18–23 (2012)
- Martins D., Fontão A., Dourado F., Gama M.: Bacterial cellulose as a stabilizer for oil-in-water emulsions. Chempor. BB16, 234–235 (2018)
- Matthysse A.G.: Exopolysaccharides of Agrobacterium tumefaciens. Curr. Top. Microbiol. Immunol. 418, 111–141 (2018)
- Mc Manus J.B., Yang H., Wilson L., Kubicki J.D., Tien M.: Initiation, elongation and termination of bacterial cellulose synthesis. ACS Omega, 31, 3, 2690–2698 (2018)
- Mc Namara J.T., Morgan J.L.W., Zimmer J.: A molecular description of cellulose biosynthesis. Annu. Rev. Biochem. 84, 895–921 (2015)
- Mesomya W., Pakpeankitvatana V., Komindr S., Songklanakarin J.: Effects of health food from cereal and nata de coco on serum lipids in human. Sci. Technol. 28, 23–28 (2006)
- Molina-Ramírez C., Castro M., Osorio M., Torres-Taborda M., Gómez B., Zuluaga R., Gómez C., Gañán P., Rojas O.J., Castro C.: Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials (Basel), 11, e639 (2017)
- Molina-Ramírez C., Enciso C., Torres-Taborda M., Zuluaga R., Gañán P., Rojas O.J., Castro C.: Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis. Int. J. Biol. Macromol. 1, 117, 735–741 (2018)
- Moniri M., Moghaddam A.B., Azizi S., Rahim R.A., Ariff A.B., Saad W.Z., Navaderi M., Mohamad R.: Production and status of bacterial cellulose in biomedical engineering. Nanomaterials (Basel), 7, 257–265 (2017)
- Monteiro C., Saxena I., Wang X., Kader A., Bokranz W., Simm R., Nobles D., Chromek M., Brauner A., Brown R.M., Römling U.: Characterization of cellulose production in Escherichia coli Nissle 1917 and its biological consequences. Environ. Microbiol. 11, 1105–1116 (2009)
- Morgan J.L.W., Mc Namara J.T., Zimmer J.: Mechanism of activation of bacterial cellulose synthase by cyclic-di-GMP. Nat. Struct. Mol. Biol. 21, 489–496 (2014)
- Morgan J.L., Strumillo J., Zimmer J.: Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature, 493, 181–186 (2013)
- Omadjela O., Narahari A., Strumillo J., Mélida H., Mazur O., Bulone V., Zimmer J.: BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc. Natl. Acad. Sci. USA, 29, 110, 17856–17861 (2013)
- Pereira R.H.V., Carvalho-Assef A.P., Albano R.M., Folescu T.W., Jones M.C., Leão R.S., Marques E.A.: Achromobacter xylosoxidans: characterization of strains in brazilian cystic fibrosis patients. J. Clin. Microbiol. 49, 3649–3651 (2011)
- Pontes M.H., Lee E.J., Choi J., Groisman E.A.: Salmonella promotes virulence by repressing cellulose production. Proc. Natl. Acad. Sci. USA, 21, 112, 5183–5188 (2015)
- Premjet S., Premjet D., Ohtani Y.: The Effect of ingredients of sugar cane molasses on bacterial cellulose production by Acetobacter xylinum ATCC 10245. Fibers, 63, 193–199 (2007)
- Rani M.U., Appaiah K.A.: Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. J. Food Sci. Technol. 50, 755–762 (2013)
- Rasheed M.R., Kim G.J., Senseng C.: A rare case of Sarcina ventriculi of the stomach in an asymptomatic patient. Int. J. Surg. Pathol. 24, 142–145 (2016)
- Revin V., Liyaskina E., Nazarkina M., Bogatyreva A., Shchankin M.: Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz. J. Microbiol. 49, 151–159 (2018)
- Richard V., Augimeri A., Varley J., Strap J.L.: Establishing a role for bacterial cellulose in environmental interactions: Lessons learned from diverse biofilm-producing Proteobacteria. Front. Microbiol. 6, 1282 (2015)
- Robledo M., Rivera L., Jiménez-Zurdo J.I., Rivas R., Dazzo F., Velázquez E., Martínez-Molina E., Hirsch A.M., Mateos P.F.: Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb. Cell Fact. 12, 125 (2012)
- Rodríguez-López L., Vecino X., Barbosa-Pereira L., Moldes A.B., Cruz J.M.: A multifunctional extract from corn steep liquor: antioxidant and surfactant activities. Food Funct. 7, 3724–3732 (2016)
- Ross P., Mayer R., Benziman M.: Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55, 35–58 (1991)
- Römling U.: Molecular biology of cellulose production in bacteria. Res. Microbiol. 153, 205–212 (2002)
- Römling U., Galperin M.Y., Gomelsky M.: Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77, 1–52 (2013)
- Römling U., Galperin M.Y.: Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions. Trends Microbiol. 23, 545–557 (2015)
- Sabularse V.C., Montalbo M.N., Hernandez H.P., Serrano EP.: Preparation of nata de coco-based carboxymethylcellulose coating and its effect on the post-harvest life of bell pepper (Capsicum annuum L.) fruits. Int. J. Food Sci. Nutr. 60, 206–218 (2009)
- Salari M., Sowti K.M., Rezaei M.R, Ghanbarzadeh B., Samadi K.H.: Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. Int. J. Biol. Macromol. 1, 280–288 (2019)
- Santos D.K., Rufino R.D., Luna J.M., Santos V.A., Sarubbo L.A.: Review biosurfactants: multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 17, 401–408 (2016)
- Shezad O., Khan S., Khan T., Park J.K.: Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean J. Chem. Eng. 26, 1689–1692 (2009)
- Shi Z., Zhang Y., Phillips G.O., Yang G.: Utilization of bacterial cellulose in food. Food Hydrocoll. 35, 539–545 (2014)
- Sonia A., Dasan K.P.: Celluloses microfibers (CMF)/Poly (Ethylene-Co-Vinyl Acetate) (EVA) composites for food packaging applications: a study based on barrier and biodegradation behavior. J. Food Eng. 118, 78–89 (2013)
- Spiers A.J., Bohannon J., Gehrig S.M., Rainey P.B.: Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol. Microbiol. 50, 15–27 (2003)
- Starzyk J., Niewiadomska A., Wolna-Maruwka A., Swędrzyńska D.: Zmiany liczebności Azospirillum i Azotobacter w glebie pod uprawą kukurydzy (Zea Mays L.) z zastosowaniem różnych nawozów organicznych. Fragm. Agron. 30, 147–155 (2013)
- Suppakul P., Jutakor K., Bangchokedee Y.: Efficacy of cellulose-based coating on enhancing the shelf life of fresh eggs. J. Food Eng. 98, 207–213 (2010)
- Tabaii M.J., Emtiazi G.: Comparison of bacterial cellulose production among different strains and fermented media. App. Food Biotechnol. 3, 35–41 (2016)
- Tahara N., Tabuchi M., Watanabe K., Yano H., Morinaga Y., Yoshinaga F.: Degree of polymerization of cellulose from Acetobacter xylinum BPR2001 decreased by cellulase produced by the strain. Biosci. Biotechnol. Biochem. 61, 1862–1865 (1997)
- Tanskul S., Amornthatree K., Jaturonlak N.: A new cellulose-producing bacterium, Rhodococcus sp. MI 2: screening and optimization of culture conditions. Carbohydr. Polym. 30, 92, 421–428 (2013)
- Tsouko E., Kourmentza C., Ladakis D., Kopsahelis N., Mandala I., Papanikolaou S., Paloukis F., Alves V., Koutinas A.: Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 16, 14832–14849 (2015)
- Ul-Islam M., Khan T., Park J.K.: Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr. Polym. 88, 596–603 (2012)
- Vazquez A., Foresti M. L., Cerrutti P., Galvagno M.: Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J. Polym. Environ. 21, 545–554 (2013)
- Williams A., Wilkinson A., Krehenbrink M., Russo D.M., Zorreguieta A., Downie J.A.: Glucomannan-mediated attachment of Rhizobium leguminosarum to pea root hairs is required for competitive nodule infection. J. Bacteriol. 190, 4706–4715 (2008)
- Whitney J.C., Howell P.L.: Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol. 21, 63–72 (2013)
- Wu D., Li X., Shen C., Lu J., Chen J., Xie G.: Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain. Int. J. Food Microbiol. 180, 19–23 (2014)
- Wu J.M., Liu R.H.: Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr. Polym. 90, 116–121 (2012)
- Wu J.M., Liu R.H.: Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. J. Biosci. Bioeng. 115, 284–290 (2013)
- Wu S.C., Li M.H.: Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus. J. Biosci. Bioeng. 120, 444–449 (2015)
- Yang X.Y., Huang C., Guo H.J., Xiong L., Li Y.Y., Zhang H.R., Chen X.D.: Bioconversion of elephant grass (Pennisetum purpureum) acid hydrolysate to bacterial cellulose by Gluconacetobacter xylinus. J. Appl. Microbiol. 115, 995–1002 (2013)
- Zhang S., Kingsley R.A., Santos R.L., Andrews-Polymenis H., Raffatellu M., Figueiredo J., Nunes J., Tsolis R.M., Adams G.L., Bäumler A.J.: Molecular pathogenesis of Salmonella enterica serotype Typhimurium-induced diarrhea. Infect. Immun. 71, 1–12 (2003)
- Zhang S., Winestrand S., Guo X., Chen L., Hong F., Jönsson L.J.: Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus. Microb. Cell Fact. 13, (2014)
- Zhao Q., Zhao M., Li J., Yang B., Su G., Cui C., Jiang Y.: Effect of hydroxypropyl methylcellulose on the textural and whipping properties of whipped cream. Food Hydrocoll. 23, 2168–2173 (2009)
- Zhou L.L., Sun D.P., Hu L.Y., Li Y.W., Yang J.Z.: Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J. Ind. Microbiol. Biotechnol. 34, 483–489 (2007)
- Żbikowska A., Kupiec M., Onacik-Gür S.: Wpływ karagenu na teksturę i stabilność oleożeli hydroksypropylometylocelulozowych. Acta Agroph. 24, 553–561 (2017)
- Żywicka A., Junka A.F., Szymczyk P., Chodaczek G., Grzesiak J., Sedghizadeh P.P., Fijałkowski K.: Bacterial cellulose yield increased over 500% by supplementation of medium with vegetable oil. Carbohydr. Polym. 199, 294–303 (2018)