Have a personal or library account? Click to login
Bionanocellulose – Properties, Acquisition And Perspectives Of Application In The Food Industry Cover

Bionanocellulose – Properties, Acquisition And Perspectives Of Application In The Food Industry

Open Access
|Mar 2020

References

  1. Abarca-Grau A.M., Burbank L.P., Paz H.D., Crespo-Rivas J.C., Marco-Noales E., López M.M., Vinardell J.M., Bodman S.B., Penyalver R.: Role for Rhizobium rhizogenes K84 Cell envelope polysaccharides in surface interactions. Appl. Environ. Microbiol. 78, 1644–1651 (2012)
  2. Akoğlu A., Karahan A.G., Çakmakçı M.L., Çakır I.: Properties of bacterial cellulose and usage in food industry. GIDA/J. Food. 35, 127–134 (2010)
  3. Arrieta M.P., Fortunati E., Dominici F., Rayón E., López J., Kenny J.M.: PLA-PHB/Cellulose based films: mechanical, barrier and disintegration properties. Polym. Degrad. Stabil. 107, 139–149 (2014)
  4. Augimeri R.V., Varley A.J., Strap J.L.: Establishing a role for bacterial cellulose in environmental interactions: Lessons learned from diverse biofilm-producing. Proteobacteria Front. Microbiol. 6, 1282 (2015)
  5. Bae S.O., Shoda M.: Bacterial cellulose production by fedbatch fermentation in molasses medium. Biotechnol. Prog. 20, 1366–1371 (2004)
  6. Bae S.O., Shoda M.: Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl. Microbiol. Biotechnol. 67, 45–51 (2005)
  7. Bielecki S., Kalinowska H.: Biotechnologiczne nanomateriały. Post. Mikrobiol. 47, 163–169 (2008)
  8. Borzani W., Souza S.J.: Mechanism of the film thickness increasing during the bacterial production of cellulose on nonagitated liquid media. Biotechnol. Lett. 17, 1271–1272 (1995)
  9. Brand M.T., Carter M.Q., Parker C.T., Chapman M.R., Huynh S., Zhou Y.: Salmonella biofilm formation on Aspergillus niger involves cellulose – chitin interactions. PLoS One, 6, e25553 (2011)
  10. Budhiono A., Rosidia B., Taher H., Iguchi M.: Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system, Carbohyd. Polym. 40, 137–143 (1999)
  11. Cakar F., Ozer I., Aytekin A.Ö., Sahin F.: Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr. Polym. 15, 106, 7–13 (2014)
  12. Cheng K.C., Catchmark J.M., Demirci A.: Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J. Biol. Eng. 3 (2009)
  13. Cheng K.C., Catchmark J.M., Demirci A.: Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules, 14, 730–736 (2011)
  14. Correa M.J., Añón M.C., Pérez G.T., Ferrero C.: Effect of modified celluloses on dough rheology and microstructure. Food Res. Int. 43, 780–787 (2010)
  15. Costa A.F.S., Almeida F.C.G., Vinhas G.M., Sarubbo L.A.: Production of bacterial cellulose by Gluconacetobacter hansenii using Corn Steep Liquor as nutrient sources. Front. Microbiol. 8, 2027 (2017)
  16. Cowles K.N., Willis D.K., Engel T.N., Jones J.B., Barak JD.: Diguanylate cyclases AdrA and STM1987 regulate Salmonella enterica exopolysaccharide production during plant colonization in an environment-eependent manner. Appl. Environ. Microbiol. 15, 1237–1248 (2016)
  17. Darch R., Harrison J., Rashid M.: Sarcina ventriculi bacteria in stomach and duodenum of a patient with gastrooesophageal obstruction by Adenocarcinoma. J. Univers. Surg. 4, 46, 1–3 (2016)
  18. Das R., Panda A.B., Pal S.: Synthesis and characterization of a novel polymeric hydrogel based on hydroxypropyl methyl cellulose grafted with polyacrylamide. Cellulose, 19, 933–945 (2012)
  19. Devinder D., Mona M., Hradesh R., Patil R.T.: Dietary fibre in foods: a review. J. Food Sci. Technol. 49, 255–266 (2012)
  20. Dourado F., Gama M., Rodrigues A.C.: A review on the toxicology and dietetic role of bacterial cellulose. Toxicol. Rep. 4, 543–553 (2017)
  21. Du J., Vepachedu V., Cho S.H., Kumar M., Nixon B.T.: Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution. PLoS One, 11, e0155886 (2016)
  22. Esa F., Tasirin S.M., Rahma N.: Overview of bacterial cellulose production and application. Agric. Agric. Sci. Procedia. 2, 113–119 (2014)
  23. Farag S., Asker M.M.S., Mahmoud M.G., Ibrahim H., Amr A.: Comparative study for bacterial cellulose production using egyptian Achromobacter sp. Res. J. Pharm. Biol. Chem. Sci. 7, 954–970 (2016)
  24. Gayathry G., Gopalaswamy G.: Production and characterization of microbial cellulosic fibre from Acetobacter xylinum. Indian J. Fibre Text. Res. 39, 93–96 (2014)
  25. George J., Ramana K.V., Sabapathy S.N., Bawa A.S.: Physico-mechanical properties of chemically treated bacterial (Acetobacter xylinum) cellulose membrane. World J. Microbiol. Biotechnol. 21, 1323–1327 (2005)
  26. Heindl J.E., Yi W., Heckel B.C., Mohari B., Feirer N., Fuqua C.: Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium. Front. Plant Sci. 5, 176–180 (2014)
  27. Hornung M.L., Gerrard A.M., Schmauder H.P.: Optimizing the production of bacterial cellulose in surface culture: Evaluation of substrate mass transfer influences on the bioreaction (Part 1), Eng. Life Sci. 6, 537–545 (2006)
  28. Hornung M.L, Schmauder H.P.: Optimizing the production of bacterial cellulose in surface culture: A novel aerosol bioreactor working on a fed batch principle (Part 3). Eng. Life Sci. 7, 35–41 (2007)
  29. Hsieh J.T., Wang M.J., Lai J.T, Liu H.S.: A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. J. Taiwan Inst. Chem. E. 63, 46–51 (2016)
  30. Huang C., Guo H.J., Xiong L., Wang B., Shi S.L., Chen X.F., Lin X.Q., Wang C., Luo J., Chen X.D.: Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr. Polym. 20, 136, 198–202 (2016)
  31. Huang C., Yang X.Y., Xiong L., Guo H.J., Luo J., Wang B., Zhang H.R., Lin X.Q., Chen X.D.: Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett. Appl. Microbiol. 60, 491–496 (2015)
  32. Huang Y., Zhu C., Yang J., Nie Y., Chen C., et al.: Recent advances in bacterial cellulose. Cellulose, 21, 1–30 (2014)
  33. Hungund B.S., Gupta S.G.: Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World. J. Microb. Biot. 26, 1823–1828 (2010)
  34. Hyun J.Y., Mahanty B., Kim C.G.: Utilization of makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus. Appl. Biochem. Biotechnol. 172, 3748–3760 (2014)
  35. Islam M.U., Ullah M.W., Khan S., Shah N., Park J.K.: Strategies for cost-effective and enhanced production of bacterial cellulose. Int. J. Biol. Macromol. 102, 1166–1173 (2017)
  36. Jahn C.E., Selimi D.A., Barak J.D., Charkowski A.O.: The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operon. Microbiology, 157, 2733–2744 (2011)
  37. Jessa J., Hozyasz K.K.: Wartość zdrowotna produktów kokosowych (Health value of coconut products). Pediatr. Pol. 90, 415–423, (2015)
  38. Ji K., Wang W., Zeng B., Chen S., Zhao Q., Chen Y., Li G., Ma T.: Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07. Sci. Rep. 6, 21863 (2016)
  39. Juda S.N., Nugraha S., Nugraha D. A.: Development of nata de coco with natural dyes using value engineering method. The 3rd International Conference on Agro-Industry 2016 “Competitive & Sustainable Agro-Industry”, 96–109 (2016)
  40. Jung H., Ha O., Shehzad S., Khan S., Yong L.J., Won P.T., Khan J., Kon P.: Production of bacterial cellulose by a static cultivation using the waste from beer culture broth. Korean J. Chem. Eng. 25, 812 (2008)
  41. Jung H.I., Jeong J.H., Lee O.M., Park G.T., Kim K.K., Park H.C., Lee S.M., Kim Y.G., Son H.J.: Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresour. Technol. 101, 3602–3608 (2010)
  42. Jung H.I., Lee O.M., Jeong J.H., Jeon Y.D., Park K.H., Kim H.S., An W.G., Son H.J.: Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium. Appl. Biochem. Biotechnol. 162, 486–497 (2010)
  43. Keshk S.M.: Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate. Enzyme Microb. Tech. 40, 9–12 (2006)
  44. Keshk S.M., Razek T.M., Sameshima K.: Bacterial cellulose production from beet molasses. Afr. J. Biotechnol. 5, 1519–1523 (2006)
  45. Kim S.Y., Kim J.N., Wee Y.J., Park D.H., Ryu H.W.: Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar. Appl. Biochem. Biotechnol. 129, 705–715 (2006)
  46. Kimbrough T.G., Miller S.I.: Assembly of the type III secretion needle complex of Salmonella typhimurium. Microbes. Infect. 4, 75–82 (2002)
  47. Kiziltas E.E., Kiziltas A., Gardnera D.J.: Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr. Polym. 124, 131–138 (2015)
  48. Kubiak K., Kalinowska H., Peplińska M., Bielecki S.: Celuloza bakteryjna jako bionanomateriał. Post. Biol. Komórki, 36, 85–98 (2009)
  49. Lima E.B., Sousa C.N., Meneses L.N., Ximenes N.C., Santos M.A., Vasconcelos G.S., Lima N.B., Patrocínio M.C., Macedo D., Vasconcelos S.M.: Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review. Braz. J. Med. Biol. Res. 48, 953–964 (2015)
  50. Lin D., Lopez-Sanchez P., Li R., Li Z.: Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour. Technol. 151, 113–119 (2014)
  51. Lin S.P. i wsp.: Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20, 2191–2218 (2013)
  52. Lin S.B., Chen L.C., Chen H.H.: Physical characteristics of surimi and bacterial cellulose composite gel. J. Food Process Eng. 34, 1363–1379 (2011)
  53. Luo M.T., Huang C., Chen X.F., Huang Q.L., Qi G.X., Tian L.L., Xiong L., Li H.L., Chen X.D.: Efficient bioconversion from acid hydrolysate of waste oleaginous yeast biomass after microbial oil extraction to bacterial cellulose by Komagataeibacter xylinus. Prep. Biochem. Biotechnol. 47, 1025–1031 (2017)
  54. Luo M.T., Zhao C., Huang C., Chen X.F., Huang Q.L., Qi G.X., Tian L.L., Xiong L., Li H.L., Chen X.D.: Efficient using Durian shell hydrolysate as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus. Indian J. Microbiol. 57, 393–399 (2017)
  55. Ma T., Ji K., Wang W., Wang J., Li Z., Ran H., Liu B., Li G.: Cellulose synthesized by Enterobacter sp. FY-07 under aerobic and anaerobic conditions. Bioresour. Technol. 126, 18–23 (2012)
  56. Martins D., Fontão A., Dourado F., Gama M.: Bacterial cellulose as a stabilizer for oil-in-water emulsions. Chempor. BB16, 234–235 (2018)
  57. Matthysse A.G.: Exopolysaccharides of Agrobacterium tumefaciens. Curr. Top. Microbiol. Immunol. 418, 111–141 (2018)
  58. Mc Manus J.B., Yang H., Wilson L., Kubicki J.D., Tien M.: Initiation, elongation and termination of bacterial cellulose synthesis. ACS Omega, 31, 3, 2690–2698 (2018)
  59. Mc Namara J.T., Morgan J.L.W., Zimmer J.: A molecular description of cellulose biosynthesis. Annu. Rev. Biochem. 84, 895–921 (2015)
  60. Mesomya W., Pakpeankitvatana V., Komindr S., Songklanakarin J.: Effects of health food from cereal and nata de coco on serum lipids in human. Sci. Technol. 28, 23–28 (2006)
  61. Molina-Ramírez C., Castro M., Osorio M., Torres-Taborda M., Gómez B., Zuluaga R., Gómez C., Gañán P., Rojas O.J., Castro C.: Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials (Basel), 11, e639 (2017)
  62. Molina-Ramírez C., Enciso C., Torres-Taborda M., Zuluaga R., Gañán P., Rojas O.J., Castro C.: Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis. Int. J. Biol. Macromol. 1, 117, 735–741 (2018)
  63. Moniri M., Moghaddam A.B., Azizi S., Rahim R.A., Ariff A.B., Saad W.Z., Navaderi M., Mohamad R.: Production and status of bacterial cellulose in biomedical engineering. Nanomaterials (Basel), 7, 257–265 (2017)
  64. Monteiro C., Saxena I., Wang X., Kader A., Bokranz W., Simm R., Nobles D., Chromek M., Brauner A., Brown R.M., Römling U.: Characterization of cellulose production in Escherichia coli Nissle 1917 and its biological consequences. Environ. Microbiol. 11, 1105–1116 (2009)
  65. Morgan J.L.W., Mc Namara J.T., Zimmer J.: Mechanism of activation of bacterial cellulose synthase by cyclic-di-GMP. Nat. Struct. Mol. Biol. 21, 489–496 (2014)
  66. Morgan J.L., Strumillo J., Zimmer J.: Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature, 493, 181–186 (2013)
  67. Omadjela O., Narahari A., Strumillo J., Mélida H., Mazur O., Bulone V., Zimmer J.: BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc. Natl. Acad. Sci. USA, 29, 110, 17856–17861 (2013)
  68. Pereira R.H.V., Carvalho-Assef A.P., Albano R.M., Folescu T.W., Jones M.C., Leão R.S., Marques E.A.: Achromobacter xylosoxidans: characterization of strains in brazilian cystic fibrosis patients. J. Clin. Microbiol. 49, 3649–3651 (2011)
  69. Pontes M.H., Lee E.J., Choi J., Groisman E.A.: Salmonella promotes virulence by repressing cellulose production. Proc. Natl. Acad. Sci. USA, 21, 112, 5183–5188 (2015)
  70. Premjet S., Premjet D., Ohtani Y.: The Effect of ingredients of sugar cane molasses on bacterial cellulose production by Acetobacter xylinum ATCC 10245. Fibers, 63, 193–199 (2007)
  71. Rani M.U., Appaiah K.A.: Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. J. Food Sci. Technol. 50, 755–762 (2013)
  72. Rasheed M.R., Kim G.J., Senseng C.: A rare case of Sarcina ventriculi of the stomach in an asymptomatic patient. Int. J. Surg. Pathol. 24, 142–145 (2016)
  73. Revin V., Liyaskina E., Nazarkina M., Bogatyreva A., Shchankin M.: Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz. J. Microbiol. 49, 151–159 (2018)
  74. Richard V., Augimeri A., Varley J., Strap J.L.: Establishing a role for bacterial cellulose in environmental interactions: Lessons learned from diverse biofilm-producing Proteobacteria. Front. Microbiol. 6, 1282 (2015)
  75. Robledo M., Rivera L., Jiménez-Zurdo J.I., Rivas R., Dazzo F., Velázquez E., Martínez-Molina E., Hirsch A.M., Mateos P.F.: Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb. Cell Fact. 12, 125 (2012)
  76. Rodríguez-López L., Vecino X., Barbosa-Pereira L., Moldes A.B., Cruz J.M.: A multifunctional extract from corn steep liquor: antioxidant and surfactant activities. Food Funct. 7, 3724–3732 (2016)
  77. Ross P., Mayer R., Benziman M.: Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55, 35–58 (1991)
  78. Römling U.: Molecular biology of cellulose production in bacteria. Res. Microbiol. 153, 205–212 (2002)
  79. Römling U., Galperin M.Y., Gomelsky M.: Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77, 1–52 (2013)
  80. Römling U., Galperin M.Y.: Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions. Trends Microbiol. 23, 545–557 (2015)
  81. Sabularse V.C., Montalbo M.N., Hernandez H.P., Serrano EP.: Preparation of nata de coco-based carboxymethylcellulose coating and its effect on the post-harvest life of bell pepper (Capsicum annuum L.) fruits. Int. J. Food Sci. Nutr. 60, 206–218 (2009)
  82. Salari M., Sowti K.M., Rezaei M.R, Ghanbarzadeh B., Samadi K.H.: Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. Int. J. Biol. Macromol. 1, 280–288 (2019)
  83. Santos D.K., Rufino R.D., Luna J.M., Santos V.A., Sarubbo L.A.: Review biosurfactants: multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 17, 401–408 (2016)
  84. Shezad O., Khan S., Khan T., Park J.K.: Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean J. Chem. Eng. 26, 1689–1692 (2009)
  85. Shi Z., Zhang Y., Phillips G.O., Yang G.: Utilization of bacterial cellulose in food. Food Hydrocoll. 35, 539–545 (2014)
  86. Sonia A., Dasan K.P.: Celluloses microfibers (CMF)/Poly (Ethylene-Co-Vinyl Acetate) (EVA) composites for food packaging applications: a study based on barrier and biodegradation behavior. J. Food Eng. 118, 78–89 (2013)
  87. Spiers A.J., Bohannon J., Gehrig S.M., Rainey P.B.: Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol. Microbiol. 50, 15–27 (2003)
  88. Starzyk J., Niewiadomska A., Wolna-Maruwka A., Swędrzyńska D.: Zmiany liczebności Azospirillum i Azotobacter w glebie pod uprawą kukurydzy (Zea Mays L.) z zastosowaniem różnych nawozów organicznych. Fragm. Agron. 30, 147–155 (2013)
  89. Suppakul P., Jutakor K., Bangchokedee Y.: Efficacy of cellulose-based coating on enhancing the shelf life of fresh eggs. J. Food Eng. 98, 207–213 (2010)
  90. Tabaii M.J., Emtiazi G.: Comparison of bacterial cellulose production among different strains and fermented media. App. Food Biotechnol. 3, 35–41 (2016)
  91. Tahara N., Tabuchi M., Watanabe K., Yano H., Morinaga Y., Yoshinaga F.: Degree of polymerization of cellulose from Acetobacter xylinum BPR2001 decreased by cellulase produced by the strain. Biosci. Biotechnol. Biochem. 61, 1862–1865 (1997)
  92. Tanskul S., Amornthatree K., Jaturonlak N.: A new cellulose-producing bacterium, Rhodococcus sp. MI 2: screening and optimization of culture conditions. Carbohydr. Polym. 30, 92, 421–428 (2013)
  93. Tsouko E., Kourmentza C., Ladakis D., Kopsahelis N., Mandala I., Papanikolaou S., Paloukis F., Alves V., Koutinas A.: Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 16, 14832–14849 (2015)
  94. Ul-Islam M., Khan T., Park J.K.: Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr. Polym. 88, 596–603 (2012)
  95. Vazquez A., Foresti M. L., Cerrutti P., Galvagno M.: Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J. Polym. Environ. 21, 545–554 (2013)
  96. Williams A., Wilkinson A., Krehenbrink M., Russo D.M., Zorreguieta A., Downie J.A.: Glucomannan-mediated attachment of Rhizobium leguminosarum to pea root hairs is required for competitive nodule infection. J. Bacteriol. 190, 4706–4715 (2008)
  97. Whitney J.C., Howell P.L.: Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol. 21, 63–72 (2013)
  98. Wu D., Li X., Shen C., Lu J., Chen J., Xie G.: Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain. Int. J. Food Microbiol. 180, 19–23 (2014)
  99. Wu J.M., Liu R.H.: Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr. Polym. 90, 116–121 (2012)
  100. Wu J.M., Liu R.H.: Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. J. Biosci. Bioeng. 115, 284–290 (2013)
  101. Wu S.C., Li M.H.: Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus. J. Biosci. Bioeng. 120, 444–449 (2015)
  102. Yang X.Y., Huang C., Guo H.J., Xiong L., Li Y.Y., Zhang H.R., Chen X.D.: Bioconversion of elephant grass (Pennisetum purpureum) acid hydrolysate to bacterial cellulose by Gluconacetobacter xylinus. J. Appl. Microbiol. 115, 995–1002 (2013)
  103. Zhang S., Kingsley R.A., Santos R.L., Andrews-Polymenis H., Raffatellu M., Figueiredo J., Nunes J., Tsolis R.M., Adams G.L., Bäumler A.J.: Molecular pathogenesis of Salmonella enterica serotype Typhimurium-induced diarrhea. Infect. Immun. 71, 1–12 (2003)
  104. Zhang S., Winestrand S., Guo X., Chen L., Hong F., Jönsson L.J.: Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus. Microb. Cell Fact. 13, (2014)
  105. Zhao Q., Zhao M., Li J., Yang B., Su G., Cui C., Jiang Y.: Effect of hydroxypropyl methylcellulose on the textural and whipping properties of whipped cream. Food Hydrocoll. 23, 2168–2173 (2009)
  106. Zhou L.L., Sun D.P., Hu L.Y., Li Y.W., Yang J.Z.: Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J. Ind. Microbiol. Biotechnol. 34, 483–489 (2007)
  107. Żbikowska A., Kupiec M., Onacik-Gür S.: Wpływ karagenu na teksturę i stabilność oleożeli hydroksypropylometylocelulozowych. Acta Agroph. 24, 553–561 (2017)
  108. Żywicka A., Junka A.F., Szymczyk P., Chodaczek G., Grzesiak J., Sedghizadeh P.P., Fijałkowski K.: Bacterial cellulose yield increased over 500% by supplementation of medium with vegetable oil. Carbohydr. Polym. 199, 294–303 (2018)
DOI: https://doi.org/10.21307/PM-2020.59.1.008 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 87 - 102
Submitted on: Jul 1, 2019
Accepted on: Dec 1, 2019
Published on: Mar 23, 2020
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Remigiusz Olędzki, Ewa Walaszczyk, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.