Have a personal or library account? Click to login
A fast and simple bonding method for low cost microfluidic chip fabrication Cover

A fast and simple bonding method for low cost microfluidic chip fabrication

By: Zhifu Yin and  Helin Zou  
Open Access
|Mar 2018

References

  1. [1] X. Zhang, L. Li and C. Luo, “Gel integration for microfluidic applications”, Lab on a Chip, vol. 16, no.10, pp. 1757-1776, 2016.
  2. [2] B. C. Lin, “Research and Industrialization of Microfluidic Chip”, Chinese Journal of Analytical Chemistry, vol. 44, no.4, pp. 491-499, 2016.
  3. [3] L. Wang, W. Liu, S. Li, T. Liu, X. Yan, Y. Shi, Z. Cheng, C. And and Chen, “Fast fabrication of microfluidic devices using a low-cost prototyping method”, Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 22, no.4, pp. 677-686, 2016.10.1007/s00542-015-2465-z
  4. [4] A. Ghobeity, H. J. Crabtree, M. Papini and J. K. Spelt, “Characterisation and comparison of microfluidic chips formed using abrasive jet micromachining and wet etching”, Journal of Micromechanics and Microengineering, vol. 22, no.2, pp. 025014, 2012.10.1088/0960-1317/22/2/025014
  5. [5] R. J. Hu, M. Lei, H. S. Xiong, X. Mu, Y. G. Wang and X. F. Yin, “Highly selective acylation of ferrocene using microfluidic chip reactor”, Tetrahedron Letters, vol. 49, no.2, pp. 387-389, 2008.10.1016/j.tetlet.2007.11.035
  6. [6] J. Xu, L. Shi, C. Wang, D. Shan and B. Guo, “Micro hot embossing of micro-array channels ultrafine-grained pure aluminum using a silicon die”, Journal of Materials Processing Technology, vol. 225, pp. 375-384, 2015.10.1016/j.jmatprotec.2015.06.025
  7. [7] G. Fu, S. B. Tor, N. H. Loh, B. Y. Tay and D. E. Hardt, “The demolding of powder injection molded micro-structures: Analysis, simulation and experiment”, Journal of Micromechanics and Microengineering, vol. 18, no.7, pp. 2008.10.1088/0960-1317/18/7/075024
  8. [8] X. Di, K. P. Chen, K. Ohlinger and L. Yuankun, “Nanoimprinting Lithography of a Two-layer Phase mask for Three-dimensional Photonic Structure Holographic Fabrications via Single Exposure”, Nanotechnology, vol. 22, no.3, pp. 035303, 2011.
  9. [9] V. Sunkara, D. K. Park and Y. K. Cho, “Versatile method for bonding hard and soft materials”, RSC Advances, vol. 2, no.24, pp. 9066-9070, 2012.
  10. [10] Y. L. Wu, J. J. Lin, P. Y. Hsu and C. P. Hsu, “Highly sensitive polysilicon wire sensor for DNA detection using silica nanoparticles/gamma-APTES nanocomposite for surface modification”, Sensors and Actuators: B Chemical, vol. 155, no.2, pp. 709-715, 2011.10.1016/j.snb.2011.01.035
  11. [11] X. Zhu, G. Liu, Y. Guo and Y. Tian, “Study of PMMA thermal bonding”, Microsystem Technologies, vol. 13, no.3, pp. 403-407, 2007.10.1007/s00542-006-0224-x
  12. [12] Y. Sun, Y. C. Kwok and N. T. Nguyen, “Low-pressure, high-tem-pq erature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation”, Journal of Micromechanics and Microengineering, vol. 16, no.8, pp. 1681, 2006.10.1088/0960-1317/16/8/033
  13. [13] Z. Zhang, X. Wang, Y. Luo, S. He and L. Wang, “Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices”, Talanta, vol. 81, no.4, pp. 1331-1338, 2010.10.1016/j.talanta.2010.02.03120441903
  14. [14] S. H. Ng, R. T. Tjeung, Z. F. Wang, A. C. W. Lu, I. Rodriguez, N. F. de and Rooij, “Thermally activated solvent bonding of polymers”, Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 14, no.6, pp. 753-759, 2008.10.1007/s00542-007-0459-1
  15. [15] Y. C. Hsu and T. Y. Chen, “Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic mu-TAS devices”, Biomedical Microdevices, vol. 9, no.4, pp. 513-522, 2007.10.1007/s10544-007-9059-117516175
  16. [16] A. A. Yussuf, I. Sbarski, J. P. Hayes, M. Solomon and N. Tran, “Microwave welding of polymeric-microfluidic devices”, Journal of Micromechanics and Microengineering, vol. 15, no.9, pp. 1692-1699, 2005.10.1088/0960-1317/15/9/011
  17. [17] R. Chantiwas, M. L. Hupert, S. R. Pullagurla, S. Balamurugan, J. Tamarit, S. Park, P. Datta, J. Goettert, Y. K. Cho and S. A. Soper, “Simple replication methods for producing nanoslits thermoplastics and the transport dynamics of double-stranded DNA through these slits”, Lab on a Chip, vol. 10, no.23, pp. 3255-3264, 2010.
  18. [18] L. Junshan, Q. Hongchao, L. Chong, X. Zheng, L. Yongqian and W. Liding, “Plasma assisted thermal bonding for PMMA microfluidic chips with integrated metal microelectrodes”, Sensors and Actuators: B Chemical, vol. 141, no.2, pp. 646-51, 2009.10.1016/j.snb.2009.07.032
  19. [19] H. Zhang, X. Liu and Z. Peng, “Investigation of Thermal Bonding on PMMA Capillary Electrophoresis Chip”, vol. 60, pp. 288, 2009.10.4028/www.scientific.net/AMR.60-61.288
  20. [20] H. Takagi, M. Takahashi, R. Maeda, Y. Onishi, Y. Iriye, T. Iwasaki and Y. Hirai, “Analysis of time dependent polymer deformation based on a viscoelastic model thermal imprint process”, Microelectronic Engineering, vol. 85, no.5, pp. 902-906, 2008.10.1016/j.mee.2008.01.018
  21. [21] E. Cheng, Z. Yin, H. Zou and P. Jurčíček, “Experimental and numerical study on deformation behavior of polyethylene terephthalate two-dimensional nanochannels during hot embossing process”, Journal of Micromechanics and Microengineering, vol. 24, no.1, pp. 015004, 2014.
  22. [22] M. L. Williams, R. F. Landel and J. D. Ferry, “Mechanical properties of substances of high molecular weight. 19. the temperature dependence of relaxation mechanisms amorphous polymers and other glass-forming liquids”, Journal of the American Chemical Society, vol. 77, no.14, pp. 3701-3707, 1955.
  23. [23] J. J. Aklonis and W. J. MacKnight Introduction to polymer viscoelasticity, Interscience: Wiley, 1983.
  24. [24] R. C. Progelhof, J. L.Throne and R. Progelhof, Polymer engineering principles: properties, processes, and tests for design, Cincinnati: Hanser Gardner, 1993.
  25. [25] P. Nagarajan and D. Yao, “Uniform Shell Patterning Using Rubber-Assisted Hot Embossing Process. II. Process Analysis”, Polymer Engineering and Science, vol. 51, no.3, pp. 601-608, 2011.10.1002/pen.21854
  26. [26] H. Hocheng and C. C. Nien, “Numerical analysis of effects of mold features and contact friction on cavity filling the nanoimprinting process”, Journal of Microlithography Microfabrication and Microsystems, vol. 5, no.1, pp. 011004, 2006.
DOI: https://doi.org/10.1515/jee-2018-0010 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 72 - 78
Submitted on: Sep 11, 2017
|
Published on: Mar 7, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2018 Zhifu Yin, Helin Zou, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.