Have a personal or library account? Click to login
Saturating Stiffness Control of Robot Manipulators with Bounded Inputs Cover

References

  1. Aguiñaga-Ruiz, E., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2009). Global trajectory tracking through static feedback for robot manipulators with bounded inputs, IEEE Transactions on Control Systems Technology17(4): 934–944.10.1109/TCST.2009.2013938
  2. Akdoğan, E. and Adli, M.A. (2011). The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot, Mechatronics21(3): 509–522.10.1016/j.mechatronics.2011.01.005
  3. Belter, D., Łabecki, P., Fankhauser, P. and Siegwart, R. (2016). RGB-D terrain perception and dense mapping for legged robots, International Journal of Applied Mathematics and Computer Science26(1): 81–97, DOI: 10.1515/amcs-2016-0006.10.1515/amcs-2016-0006
  4. Canudas, C., Siciliano, B. and Bastin, G. (2012). Theory of Robot Control, Springer-Verlag, London.
  5. Caverly, R.J., Zlotnik, D.E., Bridgeman, L.J. and Forbes, J.R. (2014). Saturated proportional derivative control of flexible-joint manipulators, Robotics and Computer-Integrated Manufacturing30(6): 658–666.10.1016/j.rcim.2014.06.001
  6. Caverly, R.J., Zlotnik, D.E. and Forbes, J.R. (2016). Saturated control of flexible-joint manipulators using a Hammerstein strictly positive real compensator, Robotica34(06): 1367–1382.10.1017/S0263574714002343
  7. Chávez-Olivares, C., Reyes, F. and González-Galván, E. (2015). On stiffness regulators with dissipative injection for robot manipulators, International Journal of Advanced Robotic Systems12(65): 1–15.10.5772/60054
  8. Chávez-Olivares, C., Reyes, F., González-Galván, E., Mendoza, M. and Bonilla, I. (2012). Experimental evaluation of parameter identification schemes on an anthropomorphic direct drive robot, International Journal of Advanced Robotic Systems9(203): 1–18.10.5772/52190
  9. Dario, P., Guglielmelli, E. and Allotta, B. (1994). Robotics in medicine, IEEE/RSJ/GI International Conference on Intelligent Robots and Systems: Advanced Robotic Systems and the Real World, IROS’94, Munich, Germany, Vol. 2, pp. 739–752.
  10. Dehghani, S., Taghirad, H. and Darainy, M. (2010). Self-tunning dynamic impedance control for human arm motion, 7th Iranian Conference of Biomedical Engineering (ICBME), Isfahan, Iran, pp. 1–5.
  11. Deneve, A., Moughamir, S., Afilal, L. and Zaytoon, J. (2008). Control system design of a 3-DOF upper limbs rehabilitation robot, Computer Methods and Programs in Biomedicine89(2): 202–214.10.1016/j.cmpb.2007.07.00617881080
  12. Djebrani, S., Benali, A. and Abdessemed, F. (2012). Modelling and control of an omnidirectional mobile manipulator, International Journal of Applied Mathematics and Computer Science22(3): 601–616, DOI: 10.2478/v10006-012-0046-1.10.2478/v10006-012-0046-1
  13. Dulęba, I. and Opałka, M. (2013). A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators, International Journal of Applied Mathematics and Computer Science23(2): 373–382, DOI: 10.2478/amcs-2013-0028.10.2478/amcs-2013-0028
  14. Falaki, A. and Towhidkhah, F. (2012). Supervisory model predictive impedance control for human arm movement, 20th Iranian Conference on Electrical Engineering, Tehran, Iran, pp. 1562–1566.
  15. He, W., Dong, Y. and Sun, C. (2016). Adaptive neural impedance control of a robotic manipulator with input saturation, IEEE Transactions on Systems, Man, and Cybernetics: Systems46(3): 334–344.10.1109/TSMC.2015.2429555
  16. Hogan, N. (1985). Impedance control: An approach to manipulation. I: Theory, II: Implementation, III: Applications, ASME Journal of Dynamic Systems, Measurement and Control107(1): 1–24.
  17. Ju, M.S., Lin, C.C.K., Lin, D.H., Hwang, I.S. and Chen, S.M. (2005). A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot, IEEE Transactions on Neural Systems & Rehabilitation Engineering13(3): 349–358.10.1109/TNSRE.2005.847354
  18. Kelly, R., Santibáñez, V. and Berghuis, H. (1997). Point-to-point robot control under actuator constraints, Control Engineering Practice5(11): 1555–1562.10.1016/S0967-0661(97)10009-0
  19. Kelly, R., Santibáñez, V. and Loría, A. (2005). Control of Robot Manipulators in Joint Space, Springer-Verlag, London.
  20. Khalil, H. (2002). Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ.
  21. Kiguchi, K., Imada, Y. and Liyanaje, M. (2007). EMG-based neuro-fuzzy control of a 4-DOF upper-limb power-assist exoskeleton, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, pp. 3040–3043.
  22. Kurfess, T. (2004). Robotics and Automation Handbook, CRC Press, Boca Raton, FL.10.1201/9781420039733
  23. Li, Y., Ge, S.S., Yang, C., Li, X. and Tee, K.P. (2011). Model-free impedance control for safe human–robot interaction, 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 6021–6026.
  24. López-Araujo, D.J., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2013a). A generalized scheme for the global adaptive regulation of robot manipulators with bounded inputs, Robotica31(7): 1103–1117.10.1017/S0263574713000350
  25. López-Araujo, D.J., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2013b). Output-feedback adaptive control for the global regulation of robot manipulators with bounded inputs, International Journal of Control, Automation, and Systems11(1): 105–115.10.1007/s12555-012-9203-4
  26. López-Araujo, D. J., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2015). A generalized global adaptive tracking control scheme for robot manipulators with bounded inputs, International Journal of Adaptive Control and Signal Processing29(2): 180–200.10.1002/acs.2466
  27. Mendoza, M., Bonilla, I., Reyes, F. and González-Galván, E. (2012). A Lyapunov-based design tool of impedance controllers for robot manipulators, Kybernetika48(6): 1136–1155.
  28. Mendoza, M., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2015a). A generalised PID-type control scheme with simple for the global regulation of robot manipulators with tuning constrained inputs, International Journal of Control88(10): 1995–2012.10.1080/00207179.2015.1027272
  29. Mendoza, M., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2015b). Output-feedback proportional-integral-derivative-type control with simple tuning for the global regulation of robot manipulators with input constraints, IET Control Theory and Applications9(14): 2097–2106.10.1049/iet-cta.2014.0680
DOI: https://doi.org/10.1515/amcs-2017-0006 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 79 - 90
Submitted on: Jun 9, 2016
Accepted on: Dec 6, 2016
Published on: May 4, 2017
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 María del Carmen Rodríguez-Liñán, Marco Mendoza, Isela Bonilla, César A. Chávez-Olivares, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.