Have a personal or library account? Click to login
Nonlinear Optimal and Multi-Loop Flatness-Based Control of Omnidirectional 3-Wheel Mobile Robots Cover

Nonlinear Optimal and Multi-Loop Flatness-Based Control of Omnidirectional 3-Wheel Mobile Robots

Open Access
|Dec 2024

References

  1. C. Ren, X. Li, X. Yiang and S. Ma, Extended state observer-based sliding-mode control of an omnidirectional mobile robot with friction compensation, IEEE Transactions on Industrial Electronics, vol. 66, no. 17, pp. 9580-9489, 2019.
  2. H. Kim and B.K. Kim, Online minimum energy trajectory planning and control on a straightline path for three-wheeled omnidirectional mobile robots, IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4721-4779, 2014.
  3. C. Ren, Y. Ding and S. Ma, A structure improved extended state observer-based control with application to an omnidirectional mobile robot, ISA Transactions, Elsevier, vol. 101, pp. 335-345, 2020.
  4. J.C. Lins Barreto, A.G. Scolari Conceicao, C.E.T. Dorea, L. Martinez and E.R. de Pieri, Design and implementation of Model Predictive Control with friction compensation of an omnidirectional mobile robot, IEEE/ASME Transactions on Mechatronics, vol. 19, no. 2, pp. 462-476, 2014.
  5. K.B. Kim and B.K. Kim, Minimum-time trajectory of three-wheel omnidirectional mobile robots following a bounded curvature path with a referenced heading profiile, IEEE Transactions on Robotics, vol. 27, no. 6, pp. 800-808, 2011.
  6. M. El-Sayyah, M.E. Saad and M. Saad, Enhanced MPC for omnidirectional robot motion tracking using Laguerre functions and non-iterative linearization, IEEE Access, vol. 10, pp. 118290-118302, 2022.
  7. H.C. Huang, SoPC based parallel ACO algorithm and its application to optimal motion controller design for intelligent omnidirectional mobile robot, IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 1828-1835, 2013.
  8. M. Hamaguchi, Damping and transfer control system with parallel linkage mechanism-based active vibration reducer for omnidirectional wheeled robots, IEEE/ASME Transactions on Mechatronis, vol. 23, no. 4, pp. 2424-2435, 2019.
  9. T. Kalmar-Nagy, R.D. Andreu and P Ganguly, Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle, Robotics and Autonomous Systems, Elsevier, vol. 46, pp. 47-64, 2004.
  10. F. Dong, D. Jin, X. Zhou, and J. Han, Adaptive robust constraint following control for omnidirectional mobile robot: An indirect approach, IEEE Access, vol. 9, pp. 8877=8889, 2021.
  11. J. Liu, J. Zhu, R.L. Williams and J. Wu, Omnidirectional mobile robot controller based on trajectory linearization, Robotics and Autonomous Systems, Elsevier, vol. 56, pp. 461-479, 2005.
  12. V.T. Dinh, H. Nguyen, S.M. Shin, M.K, Kim, S.B. Kim and G.S. Bynn, Tracking control of omnidirectional mobile platform with disturbance using diffeential sliding-mode controller, Journal of Precision Engineering Springer, vol, 19, no,5, pp. 39-48, 2012.
  13. N. Hacen and B. Merdal, Motion analysis and control of omnidirectional mobile robot, Journal of Control, Automation and Electrical Systems, Springer, vol. 30, pp. 194-213, 2019.
  14. D.J. Balkom, P.A. Kavathekar and M.T. Mason, Time-optimal trajectory for an omnidirectional vehicle, International Journal of Robotics Research, Sage Publications, vol. 25, no. 10, pp. 985-999, 2006.
  15. C.A. Huang, H.M. Wu and W.H. Hung, Software/Hardware-based hierarchical fiinite-time sliding-mode control with input-saturation for an omnidirectional autonomous mobile robot, IEEE Access, vol. 7, pp. 90254-90267, 2019.
  16. C. Ren, Y. Ding, S. Ma, L.Hu and X. Zhu, Passivity-based tracking control of an omnidirectional mobile robot using one geometrical parameter, Control Engineering Practice, Elsevier, vol. 90, pp. 160-168, 2019.
  17. H.M. Wu and M. Karkouh, Frictional forces and torque compensation-based cascading sliding-mode tracking control for an uncertain omnidirectional mobile robot, Measurement and Control, Sage Publications, vol. 55, no. 3, pp. 178-188, 2022.
  18. C. Ren, H. Jiang, C. Ma and S. Ma, Conditional disturbance rejection-based control for an omnidirectional mobile robot: An energy perspective, IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11641-11647, 2022.
  19. C. Ren and S. Ma, Dynamic modelling and analysis of an omnidirectional mobile robot, IEEE IROS 2013, Intl. Conf. on Intelligent Robots and Systems, Tokyo, Japan, Nov. 2013.
  20. H. Vellasco-Villa, H. Rodriguez-Castro, J. Estrada-Sanchez, H. Sira-Ramirez and I.A. Vasquez, Dynamic trajectory tracking control of an omnidirectional mobile robot based on a passive approach, Advances in Robot Manipulators, InTech Publications, 2010.
  21. K. Watanabe, Y. Shiraishi, S. Tzafestas, J, Tung and T. Fukuda, Feedback control of an omnidirectional autonomous platform for mobile service robots, Journal of Intelligent and Robotic Systems, Springer, vol. 22, pp. 315-330, 1998.
  22. M. Diehl, H.G. Bock, M. Diedem and P.B. Wieber, Fast direct multiple shooting algorithms for optimal robot control, In: Fast motion in biomechanics and robotics, Lecture Notes in Control and Information Sciences, LNCIS vol. 40, pp. 65-93, 2006.
  23. J.T. Huang, T.V. Hung and M.L. Tseng, Smooth switching robust adaptive control for omnidirectional mobile robots, IEEE Transactions on Control Systems Technology, vol. 23, no. 5, pp. 1986-1993, 2015.
  24. A.S. Lafmajani, H. Farivamejad and S. Berman, H optimal tracking controller for three-wheeled omnidirectional mobile robots with uncertain dynamics, IEEE IROS 2020, IEEE Intl. Conf. on Intelligent Robots and Systems, Las Vegas, USA, Oct. 2020.
  25. J. Lafay, C. Collette and P.B. Wieber, Model predictive control for tilt recovery of an omnidirectional wheeled humanoid robot, IEEE ICRA 2015, IEEE 2015 Intl Conf. on Robotics and Automation, Seattle, USA, May 2015.
  26. C. Ren and S.Ma, Generalized proportional integral observer-based control of an omnidirectional mobile robot, Mechatronics, Elsevier, vol. 26, pp. 36-44, 2015.
  27. M. Sira-Ramirez, C. Lopez-Uriba and M. Velasco-Villa, Linear observer-based active disturbance rejection control of the omnidirectional mobile robot, Asian Journal of Control, J. Wiley, vol. 15, no. 1, pp. 51-63, 2013.
  28. S. Lee and D. Chwa, Dynamic image-based visual servoing on monocular camera mounted omnidirectional mobile robots considering actuators and target motion via fuzzy integral sliding-mode control, IEEE Transactions on Fuzzy Systems, vol. 29, no. 7, pp. 2063-2076, 2022.
  29. G. Makonnen, S. Kumar and P.M. Pathak, Wireless hybrid visual servoing of omnidirectional wheeled mobile robots, Robotics and Autonomous Systems, Elsevier, vol. 75, pp. 450-462, 2020.
  30. G. Rigatos and K. Busawon, Robotic manipulators and vehicles: Control, estimation and fiiltering, Springer, 2018
  31. G. Rigatos and E. Karapanou, Advances in applied nonlinear optimal control, Cambridge Scholars Publishers, 2020
  32. G.G. Rigatos and S.G. Tzafestas, Extended Kalman Filtering for Fuzzy Modelling and Multi-Sensor Fusion, Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis vol. 13, pp. 251-266, 2007.
  33. M. Basseville and I. Nikiforov, Detection of abrupt changes: Theory and Applications, Prentice-Hall, 1993.
  34. G. Rigatos and Q. Zhang, Fuzzy model validation using the local statistical approach, Fuzzy Sets and Systems, Elsevier, vol. 60, no. 7, pp. 882-904,2009.
  35. G. Rigatos, M. Abbaszadeh and M.A. Hamida, Intelligent control for electric power systems and electric vehicles, Taylor and Francis/CRC Publications, 2024.
  36. G. Rigatos, Nonlinear control and fiiltering using differential fllatnesss theory approaches: Applications to electromechanical systems, Springer, 2016
  37. G.J. Toussaint, T. Basar and F. Bullo, H optimal tracking control techniques for nonlinear underactuated systems, in Proc. IEEE CDC 2000, 39th IEEE Conference on Decision and Control, Sydney Australia, 2000.
  38. G. Rigatos, M. Abbaszadeh, P. Siano, Control and estimation of dynamical nonlinear and partial differential equation systems: Theory and Applications, IET Publications, 2022
  39. G. Rigatos, M. Abbaszadeh and J. Pomares, Flatness-based control in successive loops for electropneumatic actuators and robots, IFAC Journal of Systems and Control, Elsevier, vol. 25, pp. 10222, 2023.
  40. G. Rigatos, P. Wira, M. Abbaszadeh and J. Pomares, Flatness-based control in successive loops for industrial and mobile robots, IEEE IECON 2022, IEEE 2022 Intl. Conf. on Industrial Electronics, Brussels, Belgium, Oct. 2022.
DOI: https://doi.org/10.14313/jamris/4-2024/29 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 22 - 46
Submitted on: Oct 25, 2023
Accepted on: Apr 24, 2024
Published on: Dec 10, 2024
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Gerasimos Rigatos, Masoud Abbaszadeh, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.