Have a personal or library account? Click to login
Simulation Research of Motion of Lightweight Wheeled Mobile Robot on Various Types of Soft Ground – A Case Study Cover

Simulation Research of Motion of Lightweight Wheeled Mobile Robot on Various Types of Soft Ground – A Case Study

Open Access
|Mar 2024

References

  1. K. Zhou, S. Lei, and X. Du. “Modelling and dynamic analysis of slippage level for largescale skid-steered unmanned ground vehicle,” Sci Rep, vol. 12, no. 1, Art. no. 1, Sep. 2022, doi: 10.1038/s41598-022-20262-z.
  2. J. Guo, H. Gao, L. Ding, T. Guo, and Z. Deng. “Linear normal stress under a wheel in skid for wheeled mobile robots running on sandy terrain,” Journal of Terramechanics, vol. 70, pp. 49–57, Apr. 2017, doi: 10.1016/j.jterra.2017.01.004.
  3. M. Ciszewski, M. Giergiel, T. Buratowski, and P. Małka, Modeling and Control of a Tracked Mobile Robot for Pipeline Inspection. Springer Nature, 2020.
  4. L. Liang et al. “Model-Based Coordinated Trajectory Tracking Control of Skid-Steer Mobile Robot with Timing-Belt Servo System,” Electronics, vol. 12, no. 3, Art. no. 3, Jan. 2023, doi: 10.3390/electronics12030699.
  5. A. J. Moshayedi, A. S. Roy, S. K. Sambo, Y. Zhong, and L. Liao. “Review On: The Service Robot Mathematical Model,” EAI Endorsed Transactions on AI and Robotics, vol. 1, pp. e8–e8, Feb. 2022, doi: 10.4108/airo.v1i.20.
  6. K. Peng, X. Ruan, and G. Zuo. “Dynamic model and balancing control for two-wheeled selfbalancing mobile robot on the slopes,” in Proceedings of the 10th World Congress on Intelligent Control and Automation, Jul. 2012, pp. 3681–3685. doi: 10.1109/WCICA.2012.6359086.
  7. P. Lichota. “Wavelet Transform-Based Aircraft System Identification,” Journal of Guidance, Control, and Dynamics, vol. 46, no. 2, pp. 350–361, Feb. 2023, doi: 10.2514/1.G006654.
  8. S. Sutulo and C. Guedes Soares. “An algorithm for offline identification of ship manoeuvring mathematical models from free-running tests,” Ocean Engineering, vol. 79, pp. 10–25, Mar. 2014, doi: 10.1016/j.oceaneng.2014.01.007.
  9. J. Giergiel, K. Kurc, and D. Szybicki. “Identification of the Mathematical Model of an Underwater Robot Using Artificial Inteligence,” Mechanics and Mechanical Engineering, 2014, Accessed: Jan. 16, 2024. [Online]. Available: https://www.semanticscholar.org/paper/Identification-of-the-Mathematical-Model-of-an-Giergiel-Kurc/5b4cfa76e8916013fa613c40ff06d3a966542853.
  10. A. Perrusquía and W. Yu. “Identification and optimal control of nonlinear systems using recurrent neural networks and reinforcement learning: An overview,” Neurocomputing, vol. 438, pp. 145–154, May 2021, doi: 10.1016/j.neucom.2021. 01.096.
  11. M. G. Bekker, Off-the-road Locomotion: Research and Development in Terramechanics. University of Michigan Press, 1960.
  12. J. Y. Wong, Theory of Ground Vehicles, 3rd Edition, 3rd edition. New York: Wiley-Interscience, 2001.
  13. Sh. Taheri, C. Sandu, S. Taheri, E. Pinto, and D. Gorsich. “A technical survey on Terramechanics models for tire–terrain interaction used in modeling and simulation of wheeled vehicles,” Journal of Terramechanics, vol. 57, pp. 1–22, Feb. 2015, doi: 10.1016/j.jterra.2014.08.003.
  14. K. Iagnemma and S. Dubowsky, Mobile Robots in Rough Terrain: Estimation, Motion Planning, and Control with Application to Planetary Rovers. Springer, 2004.
  15. L. Ding, H. Gao, Z. Deng, K. Yoshida, and K. Nagatani. “Slip ratio for lugged wheel of planetary rover in deformable soil: definition and estimation,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2009, pp. 3343–3348. doi: 10.1109/IROS.2009. 5354565.
  16. Z. Wang et al. “Wheels’ performance of Mars exploration rovers: Experimental study from the perspective of terramechanics and structural mechanics,” Journal of Terramechanics, vol. 92, pp. 23–42, Dec. 2020, doi: 10.1016/j.jterra.202 0.09.003.
  17. M. Trojnacki and P. Dąbek. “Studies of dynamics of a lightweight wheeled mobile robot during longitudinal motion on soft ground,” Mechanics Research Communications, vol. 82, pp. 36–42, Jun. 2017, doi: 10.1016/j.mechrescom.2016.11.001.
  18. G. N. B. Hathorn, K. Blackburn, and J. L. Brighton. “An Investigation into Wheel Sinkage on Soft Sand,” Tire Science and Technology, vol. 42, no. 2, pp. 85–100, Apr. 2014, doi: 10.2346/tire.14.420201.
  19. “Tire friction and rolling coefficients,” HP Wizard. Accessed: Jul. 25, 2023. [Online]. Available: https://hpwizard.com/tire-friction-coefficient.html.
DOI: https://doi.org/10.14313/jamris/4-2023/26 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 8 - 16
Submitted on: Oct 13, 2023
Accepted on: Nov 27, 2023
Published on: Mar 14, 2024
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Maciej Trojnacki, Przemysław Dąbek, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.