References
- C. Bonnal, J. M. Ruault, and M. C. Desjean. “Active debris removal: Recent progress and current trends,” Acta Astronautica, vol. 50, 2013, pp. 71–96; doi: 10.1016/j.actaastro.2012.11.009.
- S. Estable, et al. “Capturing and deorbiting Envisat with an Airbus Spacetug. Results from the ESA e.deorbit Consolidation Phase study,” Journal of Space Safety Engineering, vol. 7, no. 1, 2020, pp. 52–66; doi: 10.1016/j.jsse.2020.01.003.
- P. Huang, Y. Xu, and B. Liang. “Contact and impact dynamics of space manipulator and free-flying target,” Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2005; doi: 10.1109/IROS.2005.1545260.
- L. Felicetti, P. Gasbarri, A. Pisculli, M. Sabatini, and G. B. Palmerini. “Design of robotic manipulators for orbit removal of spent launchers’ stages,” Acta Astronautica, vol. 119, 2016, pp. 118–130; doi: 10.1016/j.actaastro.2015.11.012.
- F. Aghili. “Optimal control of a space manipulator for detumbling of a target satellite,” Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009; doi: 10.1109/ROBOT.2009.5152235.
- B. Zhan, M. Jin, G. Yang, and C. Zhang. “A novel strategy for space manipulator detumbling a non-cooperative target with collision avoidance,” Advances in Space Research, vol. 66(4), 2020, pp. 785–799; doi: 10.1016/j.asr.2020.05.045.
- M. Shan, J. Guo, and E. Gill. “Review and comparison of active space debris capturing and removal,” Progress in Aerospace Sciences, vol. 80, 2016, pp. 18–32; doi: 10.1016/j.paerosci.2015.11.001.
- K. Seweryn, F. L. Basmadji, and T. Rybus. “Space robot performance during tangent capture of an uncontrolled target satellite,” The Journal of the Astronautical Sciences, vol. 69, 2022, pp. 1017–1047; doi: 10.1007/s40295-022-00330-2.
- I. Dulêba. “Impact of control representations on efficiency of local nonholonomic motion planning,” Biuletyn of the Polish Academy of Sciences Technical Sciences, vol. 59, no. 2, 2011, pp. 213–218; doi: 10.2478/v10175-011-0026-x.
- J. Ratajczak, and K. Tchoń. “Normal forms and singularities of non–holonomic robotic systems: a study of free–floating space robots,” Systems & Control Letters, vol. 138, 2020, 104661; doi: 10.1016/j.sysconle.2020.104661.
- A. Ellery. “Tutorial Review on Space Manipulators for Space Debris Mitigation,” Robotica, vol. 8, no. 2, 2019; doi: 10.3390/robotics8020034.
- K. Yoshida, and Y. Umetani. “Control of a space free–flying robot,” Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, USA, 1990; doi: 10.1109/CDC.1990.203553.
- T. Rybus, K. Seweryn, and J. Z. Sąsiadek. “Application of predictive control for manipulator mounted on a satellite,” Archives of Control Sciences, vol. 28, no. 1, 2018, pp. 105–118; doi: 10.24425/119079.
- P. Palma, K. Seweryn, and T. Rybus. “Impedance control using selected compliant prismatic joint in a free-floating space manipulator,” Aerospace, vol. 9, no. 8, 2022, p. 406; doi: 10.3390/aerospace9080406.
- J. Z. Sąsiadek. “Space robotics and its challenges,” Aerospace Robotics, Springer, 2013, pp. 1–8; doi: 10.1007/978-3-642-34020-8_1.
- J. Qingxuan, Z. Xiaodong, S. Hanxu, and C. Ming. “Active control of space flexible–joint/flexible–link manipulator,” Proceedings of the 2008 IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China, 2008, pp. 812–818; doi: 10.1109/RAMECH.2008.4681344.
- S, Ulrich, J. Z. Sąsiadek, and I. Barkana. “Modeling and direct adaptive control of a flexible–joint manipulator,” Journal of Guidance, Control, And Dynamics, vol. 35, no. 1, 2012, pp. 25–39; doi: 10.2514/1.54083.
- X.-Y. Yu. “Augmented robust control of a free–floating flexible space robot,” Journal of Aerospace Engineering, vol. 229, no. 5, 2015, pp. 947–957; doi: 10.1177/0954410014541632.
- D. Meng, Y. She, W. Xu, W. Lu, and B. Liang. “Dynamic modeling and vibration characteristics analysis of flexible-link and flexible-joint space manipulator,” Multibody System Dynamics, vol. 43, 2018, pp. 321–347; doi: 10.1007/s11044-017-9611-6.
- X. Liu, H. Li, J. Wang, and G. Cai. “Dynamics analysis of flexible space robot with joint friction,” Aerospace Science and Technology, vol. 47, 2015, pp. 164–176; doi: 10.1016/j.ast.2015.09.030.
- Z. Chen, Y. Zhang, and Z. Li. “Hybrid Control Scheme Consisting of Adaptive and Optimal Controllers for Flexible-Base Flexible-Joint Space Manipulator with Uncertain Parameters,” Proceedings of the 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 2017; doi: 10.1109/IHMSC.2017.84.
- A. Stolfi, P. Gasbarri, and M. Sabatini. “A parametric analysis of a controlled deployable space manipulator for capturing a non-cooperative flexible satellite,” Acta Astronautica, vol. 148, 2018, pp. 317–326; doi: 10.1016/j.actaastro.2018.04.028.
- C. Toglia, M. Sabatini, P. Gasbarri, and G. B. Palmerini. “Optimal target grasping of a flexible space manipulator for a class of objectives,” Acta Astronautica, vol. 68(7-8), 2011, pp. 1031–1041; doi: 10.1016/j.actaastro.2010.09.013.
- R. Masoudi, and M. Mahzoon. “Maneuvering and Vibrations Control of a Free-Floating Space Robot with Flexible Arms,” Journal of Dynamic Systems, Measurement and Control, vol. 133(5), 2011, 051001; doi: 10.1115/1.4004042.
- D. Shang, X. Li, M. Yin, and F. Li. “Tracking control strategy for space flexible manipulator considering nonlinear friction torque based on adaptive fuzzy compensation sliding mode controller,” Advances in Space Research, In Press, 2020; doi: 10.1016/j.asr.2022.04.042.
- K. Nanos, and E. Papadopoulos. “On the dynamics and control of flexible joint space manipulator,” Control Engineering Practice, vol. 45, 2015, pp. 230–243; doi: 10.1016/j.conengprac.2015.06.009.
- M. Wojtunik, and K. Seweryn. “The influence of the gear reduction ratio on the free–floating space manipulator’s dynamics,” Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2021), 2021, pp. 282–289; doi: 10.5220/0010556502820289.
- H. Wang, and Y. Xie. “Prediction error based adaptive Jacobian tracking for free–floating space manipulators,” IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 4, 2012, pp. 3207–3221; doi: 10.1109/TAES.2012.6324694.
- O. Ma, H. Dang, and K. Pham. “On–orbit identification of inertia properties of spacecraft using a robotic arm,” Journal of Guidance, Control, and Dynamics, vol. 31, no. 6, 2008, pp. 1761–1771; doi: 10.2514/1.35188.
- O.-O. Christidi-Loumpasefski, C. Ntinos, and E. Papadopoulos. “Analytical and experimental parameter estimation for free–floating space manipulator systems,” Proceedings of the 14th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA ’17), Leiden, The Netherlands, 2017.
- O.-O. Christidi-Loumpasefski, C. Ntinos, and E. Papadopoulos. “On parameter estimation of flexible space manipulator systems,” Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020; doi: 10.1109/IROS45743.2020.9340768.
- Goldstein H., Poole C., and Safko J., Classical Mechanics, Third Edition, Pearson: London, 2001.
- F. Cavenago, A. M. Giordano, and M. Massari. “Contact force observer for space robots,” Proceedings of the 58th Conference on Decision and Control, Nice, France, 2019; doi: 10.1109/CDC40024.2019.9029285.
- Schaub H., and Junkins J. L., Analytical mechanics of aerospace systems, AIAA: Reston, VA, 2002.
- T. Rybus, M. Wojtunik, and F. L. Basmadji. “Optimal collision-free path planning of a free-floating space robot using spline-based trajectories,” Acta Astronautica, vol. 190, 2022, pp. 395–408; doi: 10.1016/j.actaastro.2021.10.012.
- J. Oleś, J. Kindracki, T. Rybus, Ł. Meężyk, P. Paszkiewicz, R. Moczydłowski, T. Barciński, K. Seweryn, and P. Wolański. “A 2D microgravity test-bed for the validation of space robot control algorithms,” Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 11, no. 2, 2017, pp. 95–104; doi: 10.14313/JAMRIS_2-2017/21.
- F. L. Basmadji, G. Chmaj, T. Rybus, and K. Seweryn. “Microgravity testbed for the development of space robot control systems and the demonstration of orbital maneuvers,” Proceedings of SPIE: Photonics Applications in Astronomy, Communications, Industry and High–Energy Physics Experiments, Wilga, Poland, 2019; doi: 10.1117/12.2537981.
- R. Moczydłowski. “Design of elastic element dedicated for space manipulator joint based on FEM topological optimization,” master’s thesis (in Polish: “Projekt elementu podatnego pary kinematycznej manipulatora satelitarnego bazuj1cy na optymalizacji topologicznej z wykorzystaniem oprogramowania MES”), Warsaw University of Technology, 2017.
- Garnier H., and Wang L. Advances in industrial control: Identifiication of continuous – time models from sampled data, Springer, London, 2003.
- G. Wood, and D. Kennedy. “Simulating Mechanical Systems in Simulink with SimMechanics,” Technical report, The MathWorks, Inc., Natick, USA, 2003.
- J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright. “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM Journal of Optimization, vol. 9, no. 1, 1998, pp. 112–147; doi: 10.1137/S1052623496303470.
