Have a personal or library account? Click to login

Effective nonlinear Predictive and CTC-PID Control of Rigid Manipulators

Open Access
|Jun 2024

Abstract

Effective nonlinear control of manipulators with dynamically coupled arms, like those with direct drives, is the subject of the paper. Model-based predictive control (MPC) algorithms with nonlinear state-space models and most recent disturbance attenuation technique are proposed. This technique makes controller design and online calculations simpler, avoiding necessity of dynamic modeling of disturbances or resorting to additional techniques like SMC. The core of the paper are computationally effective MPC-NPL (Nonlinear Prediction and Linearization) algorithms, where computations at every sample are divided into two parts: prediction of initial trajectories using nonlinear model, then optimization using simplified linearized model. For a comparison, a known CTC-PID algorithm, which is also model-based, is considered. It is applied in standard form and also proposed in more advanced CTC-PID2dof version. For all algorithms a comprehensive comparative simulation study is performed, for a direct drive manipulator under disturbances. Additional contribution of the paper is investigation of influence of sampling period and of computational delay time on performance of the algorithms, which is practically important when using model-based algorithms with fast sampling.

DOI: https://doi.org/10.14313/jamris/2-2024/8 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 1 - 16
Submitted on: Oct 24, 2023
Accepted on: Dec 14, 2023
Published on: Jun 23, 2024
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Piotr Tatjewski, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.