Have a personal or library account? Click to login
Health Recommender System for Sleep Apnea Using Computational Intelligence Cover

Health Recommender System for Sleep Apnea Using Computational Intelligence

Open Access
|Sep 2025

References

  1. S. K. Sharma and G. Ahluwalia, “Epidemiology of adult obstructive sleep apnoea syndrome in India,” Indian Journal of Medical Research, vol. 131, no. 2. pp. 171–175, 2010. [Online]. Available: http://journals.lww.com/ijmr.
  2. B. Lam, D. C. L. Lam, and M. S. M. Ip, “Obstructive sleep apnoea in Asia,” International. Journal of. Tuberculosis.and Lung Disease., vol. 11, no. 1, pp. 2–11, 2007, [Online]. Available: https://pu bmed.ncbi.nlm.nih.gov/17217123/.
  3. P. E. Peppard, T. Young, J. H. Barnet, M. Palta, E. W. Hagen, and K. M. Hla, “Increased prevalence of sleep-disordered breathing in adults,” American. Journal of. Epidemiology, vol. 177, no. 9, pp. 1006–1014, 2013, doi: 10.1093/aje/kws342.
  4. S. Kumar, “Sleep medicine: Evolution in India,” Annals of. Indian Academy of Neurology, vol. 16, no. 2, pp. 144–145, 2013, doi: 10.4103/0972-2327.112443.
  5. L. Campana, D. J. Eckert, S. R. Patel, and A. Malhotra, “Pathophysiology & genetics of obstructive sleep apnoea,” Indian Journal of Medical Research, vol. 131, no. 2. pp. 176–187, 2010.
  6. B. L. Jamie C.M., S.K. Sharma, “Obstructive sleep apnoea: Definitions, epidemiology & natural history.,” Indian J Med Res, vol. 131, pp. 165–170, 2010.
  7. C. G. Deepti Sinha, “Sleep Disordered Breathing in Children,” in Handbook of Clinical Techniques in Pediatric Dentistry, 131st ed., Indian J Med Res, 2021, pp. 311–320. doi: 10.1002/9781119661085.ch27.
  8. S. Chokroverty, “Overview of sleep & sleep disorders,” 2010. [Online]. Available: http://journals.lww.com/ijmr.
  9. V. Kandala, Y. Kalagani, V. Laxman, S. Darisetty, R. Palla, and D. K. Waghray, “Comparative study of obstructive sleep apnea among obese and non-obese adults: A hospital based study,” J. Basic Clin. Res., vol. 1, no. 1, pp. 5–9, 2014.
  10. E. V. Reddy et al., “Prevalence and risk factors of obstructive sleep apnea among middle-aged urban Indians: A community-based study,” Sleep Med., vol. 10, no. 8, pp. 913–918, 2009, doi: 10.1 016/j.sleep.2008.08.011.
  11. Indira Gurubhagavatula, “Consequences of obstructive sleep apnoea,” Indian J Med Res, vol. 131, pp. 188–195, 2010.
  12. H. Martin, K. M. Antony, and S. Kumar, “Obstructive Sleep Apnea in Pregnancy – Development, Impact and Potential Mechanisms,” J. Women’s Heal. Dev., vol. 03, no. 04, pp. 446–469, 2020, doi: 10.26502/fjwhd.2644-28840053.
  13. M. Semelka, J. Wilson, and R. Floyd, “Diagnosis and Treatment of Obstructive Sleep Apnea in Adults,” 2016. [Online]. Available: www.aafp.org/afp.
  14. S. D. Anker, S. Von Haehling, and R. Germany, “Sleep-disordered breathing and cardiovascular disease,” Indian Heart J., vol. 68, pp. S69–S76, 2016, doi: 10.1016/j.ihj.2015.11.018.
  15. A. D. S. Targa et al., “Breathing cessation events that compose the apnea-hypopnea index are distinctively associated with the adverse outcomes in Alzheimer’s disease,” Alzheimers. Res. Ther., vol. 15, no. 1, p. 123, Dec. 2023, doi: 10.1186/s13195-023-01266-x.
  16. M. Mavanur, M. Sanders, and M. Unruh, “Sleep disordered breathing in patients with chronic kidney disease,” Indian J. Med. Res., vol. 131, no. 2, pp. 277–284, 2010.
  17. M. Bahrami and M. Forouzanfar, “Sleep Apnea Detection from Single-Lead ECG: A Comprehensive Analysis of Machine Learning and Deep Learning Algorithms,” IEEE Trans. Instrum. Meas., vol. 71, no. February, 2022, doi: 10.1109/TIM.2022.3151947.
  18. N. Pombo, B. M. C. Silva, A. M. Pinho, and N. Garcia, “Classifier Precision Analysis for Sleep Apnea Detection Using ECG Signals,” IEEE Access, vol. 8, pp. 200477–200485, 2020, doi: 10.1109/ACCESS.2020.3036024.
  19. C. L. and G. S. Tao Wang, “Detection of Sleep Apnea from Single-Lead ECG Signal Using a Time Window Ar…: EBSCOhost.” Hidawi, pp. 1–9, 2019. doi: https://doi.org/10.1155/2019/9768072Research.
  20. I. V Varshan and M. A. Ramnadan, “Sleep Apnea Detection using single lead ECG Signal,” Int. J. Adv. Eng. Manag., vol. 5, no. 6, p. 328, 2023, doi: 10.35629/5252-0506328333.
  21. Y. Zhang et al., “Detection and severity assessment of obstructive sleep apnea according to deep learning of single-lead electrocardiogram signals,” J. Sleep Res., no. May, pp. 1–11, 2024, doi: 10.1111/jsr.14285.
  22. Y. Wang, S. Ji, T. Yang, X. Wang, H. Wang, and X. Zhao, “An Efficient Method to Detect Sleep Hypopnea-Apnea Events Based on EEG Signals,” IEEE Access, vol. 9, pp. 641–650, 2021, doi: 10.1109/ACCESS.2020.3038486.
  23. T. Paul et al., “ECG and SpO2 Signal-Based Real-Time Sleep Apnea Detection Using Feed-Forward Artificial Neural Network,” AMIA … Annu. Symp. proceedings. AMIA Symp., vol. 2022, pp. 379–385, 2022.
  24. S. K. Sharma et al., “Consensus & Evidence-based INOSA Guidelines 2014,” All India Inst. Med. Sci., vol. 140, pp. 451–468, 2014, [Online]. Available: http://journals.lww.com/ijmr.
  25. R. Huttunen et al., “A Comparison of Signal Combinations for Deep Learning-Based Simultaneous Sleep Staging and Respiratory Event Detection,” IEEE Trans. Biomed. Eng., vol. 70, no. 5, pp. 1704–1714, 2023, doi: 10.1109/TBME.2022.3225268.
  26. H. Korkalainen et al., “Accurate Deep Learning-Based Sleep Staging in a Clinical Population with Suspected Obstructive Sleep Apnea,” IEEE J. Biomed. Heal. Informatics, vol. 24, no. 7, pp. 2073–2081, 2020, doi: 10.1109/JBHI.2019.2951346.
  27. H. Han and J. Oh, “Application of various machine learning techniques to predict obstructive sleep apnea syndrome severity,” Sci. Rep., vol. 13, no. 1, pp. 1–9, 2023, doi: 10.1038/s41598-023-33170-7.
  28. Y. Shi et al., “Prediction model of obstructive sleep apnea–related hypertension: Machine learning–based development and interpretation study,” Front. Cardiovasc. Med., vol. 9, no. December, pp. 1–12, 2022, doi: 10.3389/fcvm.2022.1042996.
  29. A. Zarei, H. Beheshti, and B. M. Asl, “Detection of sleep apnea using deep neural networks and single-lead ECG signals,” Biomed. Signal Process. Control, vol. 71, no. PA, p. 103125, 2022, doi: 10.1016/j.bspc.2021.103125.
  30. Raimon Jané, “Engineering Sleep Disorders From classical CPAP devices toward new intelligent adaptive ventilatory therapy.,” IEEE Pulse, no. october, pp. 29–32, 2014, doi: 10.1109/MPUL.2014.2339292.
  31. W. Senavongse, P. Boonchoo, N. Nimitsantiwong, and A. Rangsivaranan, “Design and development of continuous positive airway pressure machine for snoring,” BMEiCON 2016 – 9th Biomed. Eng. Int. Conf., pp. 0–3, 2017, doi: 10.1109/BMEiCON.2016.7859645.
  32. Y. A. Amrulloh, B. A. Hisif, and D. A. R. Wati, “Development of On-Demand Controller for Continuous Positive Airways Pressure,” Proc. 2019 Int. Conf. Mechatronics, Robot. Syst. Eng. MoRSE 2019, no. December, pp. 20–23, 2019, doi: 10.1109/MoRSE48060.2019.8998698.
  33. D. Boisteanu, R. Vasiluta, A. Cernomaz, and C. Mucenica, “Home monitoring of sleep apnea treatment: Benefits of intelligent CPAP devices,” Proc. – 2009 Adv. Technol. Enhanc. Qual. Life, AT-EQUAL 2009, no. 1, pp. 77–80, 2009, doi: 10.1109/AT-EQUAL.2009.25.
  34. T. Penzel et al., “Cardiovascular and respiratory regulation during sleep in patients with sleep apnea with and without hypertension,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 1475–1478, 2011, doi: 10.1109/IEMBS.2011.6090360.
  35. D. Daga, M. Singh, P. Nahar, H. Mathur, A. Babel, and A. Daga, “A comparative study of alternative therapies and mandibular advancement device in the management of obstructive sleep apnea,” J. Indian Acad. Oral Med. Radiol., vol. 33, no. 4, pp. 391–396, 2021, doi: 10.4103/jiaomr.jiaomr_182_21.
  36. R. N. Aurora et al., “Updated adaptive servoventilation recommendations for the 2012 AASM guideline: ‘The treatment of central sleep apnea syndromes in adults: Practice parameters with an evidence-based literature review and meta-analyses,”’ J. Clin. Sleep Med., vol. 12, no. 5, pp. 757–761, 2016, doi: 10.5664/jcsm.5812.
  37. J. G. Webster, M. Shokoueinejad, and F. Wang, “A Sleep Apnea Therapy Device Uses No Added Pressure,” Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf., vol. 2018, pp. 6030–3035, 2018, doi: 10.1109/EMBC.2018.8513679.
  38. V. Kumar, V. Malhotra, and S. Kumar, “Application of Standardised Yoga Protocols as the Basis of Physiotherapy Recommendation in Treatment of Sleep Apneas: Moving Beyond Pranayamas,” Indian J. Otolaryngol. Head Neck Surg., vol. 71, no. s1, pp. 558–565, 2019, doi: 10.1007/s12070-018-1405-5.
  39. M. A. Bankar, S. K. Chaudhari, and K. D. Chaudhari, “Impact of long term Yoga practice on sleep quality and quality of life in the elderly,” J. Ayurveda Integr. Med., vol. 4, no. 1, pp. 28–32, 2013, doi: 10.4103/0975-9476.109548.
  40. S. B. S. Khalsa and M. R. Goldstein, “Treatment of chronic primary sleep onset insomnia with kundalini yoga: A randomized controlled trial with active sleep hygiene comparison,” J. Clin. Sleep Med., vol. 17, no. 9, pp. 1841–1852, 2021, doi: 10.5664/jcsm.9320.
  41. D. Kanchibhotla, S. G. Parekh, P. Harsora, and S. Kulkarni, “The Influence of Sudarshan Kriya Yoga on Sleep Quality in Indian Adults: An Open Trial Pilot Study,” Sleep Vigil., vol. 5, no. 2, pp. 213–220, 2021, doi: 10.1007/s41782-021-00146-4.
  42. M. Broadway, L. Matthews, and M. Kwiatkowska, “A fuzzy logic approach to modeling physical activity levels of obstructive sleep apnea patients,” Annu. Conf. North Am. Fuzzy Inf. Process. Soc. – NAFIPS, 2008, doi: 10.1109/NAFIPS.2008.4531220.
  43. A. Nakanekar and P. Khobarkar, “Ayurveda treatment can be helpful in management of snoring, obesity and type 2 Diabetes Mellitus: A case report,” J. Ayurveda Integr. Med., vol. 13, no. 1, p. 100506, 2022, doi: 10.1016/j.jaim.2021.08.001.
  44. D. Álvarez et al., “A machine learning-based test for adult sleep apnoea screening at home using oximetry and airflow,” Sci. Rep., vol. 10, no. 1, pp. 1–12, 2020, doi: 10. 1038/s41598-020-62223-4.
  45. Y. Liu, H. Liu, and B. Yang, “Automatic sleep arousals detection from polysomnography using multi-convolution neural network and random forest,” IEEE Access, vol. 8, pp. 176343–176350, 2020, doi: 10.1109/ACCESS.2020.3026814.
  46. N. Mitri, W. Marrouche, M. Awad, and R. Habib, “Irregular breathing detection in CPAP assisted patients using hierarchical temporal memory,” 2017 IEEE Symp. Ser. Comput. Intell. SSCI 2017 – Proc., vol. 2018-Janua, no. August 2018, pp. 1–6, 2018, doi: 10.1109/SSCI.2017.8285370.
  47. S. Fallmann and L. Chen, “Computational sleep behavior analysis: A survey,” IEEE Access, vol. 7, pp. 142421–142440, 2019, doi: 10.1109/ACCESS.2019.2944801.
  48. S. J. M. Rao, “Smart System Monitoring for Breathe and Pulse Irregularity Using AI&ML,” no. 3, pp. 864–871, 2023.
  49. P. Sharma, A. Jalali, M. Majmudar, K. S. Rajput, and N. Selvaraj, “Deep-Learning based Sleep Apnea Detection using SpO2 and Pulse Rate,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2022-July, pp. 2611–2614, 2022, doi: 10.1109/EMBC48229.2022.9871295.
  50. C. Mencar et al., “Application of machine learning to predict obstructive sleep apnea syndrome severity,” Health Informatics J., vol. 26, no. 1, pp. 298–317, 2020, doi: 10.1177/1460458218824725.
  51. S. Kristiansen, M. S. Hugaas, V. Goebel, T. Plagemann, K. Nikolaidis, and K. Liestøl, “Data Mining for Patient Friendly Apnea Detection,” IEEE Access, vol. 6, pp. 74598–74615, 2018, doi: 10.1109/ACCESS.2018.2882270.
  52. M. Schrader, C. Zywietz, V. Von Einem, B. Widiger, and G. Joseph, “Detection of sleep apnea in single channel ECGs from the physionet data base,” Comput. Cardiol., pp. 263–266, 2000, doi: 10.1109/cic.2000.898507.
  53. R. Lin, R. G. Lee, C. L. Tseng, H. K. Zhou, C. F. Chao, and J. A. Jiang, “A new approach for identifying sleep apnea syndrome using wavelet transform and neural networks,” Biomed. Eng. - Appl. Basis Commun., vol. 18, no. 3, pp. 138–143, 2006, doi: 10.4015/S1016237206000233.
  54. B. Xie and H. Minn, “Real-time sleep apnea detection by classifier combination,” IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 3, pp. 469–477, 2012, doi: 10.1109/TITB.2012.2188299.
  55. C. Sun, J. Fan, C. Chen, W. Li, and W. Chen, “A two-stage neural network for sleep stage classification based on feature learning, sequence learning, and data augmentation,” IEEE Access, vol. 7, pp. 109386–109397, 2019, doi: 10.1109/ACCESS.2019.2933814.
  56. Z. Strumpf et al., “Belun Ring (Belun Sleep System BLS-100): Deep learning-facilitated wearable enables obstructive sleep apnea detection, apnea severity categorization, and sleep stage classification in patients suspected of obstructive sleep apnea,” Sleep Heal., vol. 9, no. 4, pp. 430–440, 2023, doi: 10.1016/j.sleh.2023.05.001.
  57. P. Hemrajani, V. S. Dhaka, G. Rani, P. Shukla, and D. P. Bavirisetti, “Efficient Deep Learning Based Hybrid Model to Detect Obstructive Sleep Apnea,” Sensors, vol. 23, no. 10, 2023, doi: 10.3390/s23104692.
  58. B. Yang and H. Liu, “Automatic Identification of Insomnia Based on Single-Channel EEG Labelled with Sleep Stage Annotations,” IEEE Access, vol. 8, pp. 104281–104291, 2020, doi: 10.1109/ACCESS.2020.2999915.
  59. H. Bin Kwon et al., “Hybrid CNN-LSTM Network for Real-Time Apnea-Hypopnea Event Detection Based on IR-UWB Radar,” IEEE Access, vol. 10, pp. 17556–17564, 2022, doi: 10.1109/ACCESS.2021.3081747.
  60. S. Kwon et al., “At-home wireless sleep monitoring patches for the clinical assessment of sleep quality and sleep apnea,” Sci. Adv., vol. 9, no. 21, 2023, doi: 10.1126/sciadv.adg9671.
  61. X. R. B, A. Steblin, and E. Vargiu, “Internet of Things Technologies for HealthCare,” in Internet of Things Technologies for HealthCare. HealthyIoT 2016, Springer, Cham, 2016, pp. 119–124. doi: 10.1007/978-3-319-51234-1.
  62. M. Abdel-Basset, W. Ding, and L. Abdel-Fatah, “The fusion of Internet of Intelligent Things (IoIT) in remote diagnosis of obstructive Sleep Apnea: A survey and a new model,” Inf. Fusion, vol. 61, no. September 2019, pp. 84–100, 2020, doi: 10.1016/j.inffus.2020.03.010.
  63. Y. A. Nanehkaran et al., “Diagnosis of Chronic Diseases Based on Patients’ Health Records in IoT Healthcare Using the Recommender System,” Wirel. Commun. Mob. Comput., vol. 2022, 2022, doi: 10.1155/2022/5663001.
  64. M. Casal-Guisande et al., “Design of an Intelligent Decision Support System Applied to the Diagnosis of Obstructive Sleep Apnea,” Diagnostics, vol. 13, no. 11, 2023, doi: 10.3390/diagnostics13111854.
  65. S. Raza and C. Ding, “Improving Clinical Decision Making with a Two-Stage Recommender System,” IEEE/ACM Trans. Comput. Biol. Bioinforma., 2023, doi: 10.1109/TCBB.2023.3318209.
  66. S. Pinon, S. Jacquet, C. Bulcke, E. Chatzopoulos, X. Lessage, and R. Michel, “Federated Health Recommender System,” vol. 5, no. Biostec, pp. 439– 444, 2023, doi: 10.5220/0011722700003414.
  67. A. del Rio, J. Jimenez, R. Medina-García, C. Lozano-Hernández, F. Alvarez, and J. Serrano, “Improving Quality of Life in Chronic Patients: A Pilot Study on the Effectiveness of a Health Recommender System and Its Usability,” Appl. Sci., vol. 13, no. 10, 2023, doi: 10.3390/app13105850.
  68. S. Kaneriya, M. Chudasama, S. Tanwar, S. Tyagi, N. Kumar, and J. J. P. C. Rodrigues, “Markov Decision-Based Recommender System for Sleep Apnea Patients,” IEEE Int. Conf. Commun., vol. 2019-May, pp. 1–6, 2019, doi: 10.1109/ICC.2019.8761423.
  69. M. Torres-Ruiz, R. Quintero, G. Guzman, and K. T. Chui, “Healthcare Recommender System Based on Medical Specialties, Patient Profiles, and Geospatial Information,” Sustain., vol. 15, no. 1, pp. 1–16, 2023, doi: 10.3390/su15010499.
  70. U. Chinyere, M. Uvietesiri, S. Akhetuamen, and M. Obi, “Health-Care Recommender System Using Collaborative Filtering Algorithm,” vol. 3, no. 2, pp. 59–64, 2023, doi: 10.56472/25832646/JETA-V3I5P103.
  71. S. Kannan, R. U. Anitha, M. Divayapushpalakshmi, and K. S. Kalaivani, “IoT-Deep Learning Based Activity Recommendation System,” Comput. Syst. Sci. Eng., vol. 45, no. 2, pp. 2001–2016, 2023, doi: 10.32604/csse.2023.031965.
  72. V. Thorey, A. B. Hernandez, P. J. Arnal, and E. H. During, “AI vs Humans for the diagnosis of sleep apnea,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 1596–1600, 2019, doi: 10.1109/EMBC.2019.8856877.
  73. A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals.,” Circulation, vol. 101, no. 23, 2000, doi: 10.1161/01.cir.101.23.e215.
  74. T. Young, M. Palta, J. Dempsey, P. E. Peppard, F. J. Nieto, and K. M. Hla, “Burden of sleep apnea: Rationale, design, and major findings of the Wisconsin sleep cohort study,” Wis. Med. J., vol. 108, no. 5, pp. 246–249, 2009.
  75. G. Q. Zhang et al., “The National Sleep Research Resource: Towards a sleep data commons,” J. Am. Med. Informatics Assoc., vol. 25, no. 10, pp. 1351– 1358, 2018, doi: 10.1093/jamia/ocy064.
  76. T. Penzel, G. B. Moody, R. G. Mark, A. L. Goldberger, and J. H. Peter, “Apnea-ECG database,” Comput. Cardiol., pp. 255–258, 2000.
  77. W. P. Quan SF, Howard BV, Iber C, Kiley JP, Nieto FJ, O’Connor GT, Rapoport DM, Redline S, Robbins J, Samet JM, “The Sleep Heart Health Study: design, rationale, and methods,” Sleep, vol. Dec., no. 20(12), pp. 1077–85, 1997, [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/9493915.
DOI: https://doi.org/10.14313/jamris-2025-029 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 89 - 103
Submitted on: Apr 30, 2024
Accepted on: Aug 26, 2024
Published on: Sep 10, 2025
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Mubashir Khan, Yashpal Singh, Harshit Bhardwaj, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.