Have a personal or library account? Click to login

Dynamic Sliding Mode Control Based on a Full–Order Observer: Underactuated Electro–Mechanical System Regulation

Open Access
|Mar 2024

References

  1. Andrade-Da Silva, J.M., Edwards, C. and Spurgeon, S.K. (2009). Linear matrix inequality based dynamic output feedback sliding mode control for uncertain plants, American Control Conference, ACC’09, St. Louis, USA, pp. 763–768.
  2. Atassi, A.N. and Khalil, H.K. (1999). A separation principle for the stabilization of a class of nonlinear systems, IEEE Transactions on Automatic Control 44(9): 1672–1687.
  3. Cao, K., Qian, C. and Gu, J. (2023). Global sampled-data stabilization via static output feedback for a class of nonlinear uncertain systems, International Journal of Robust and Nonlinear Control 33(4): 2913–2929.
  4. Choi, H.H. and Ro, K. (2005). LMI-based sliding-mode observer design method, IEE Proceedings: Control Theory and Applications 152(1): 113–115.
  5. Gahinet, P. and Pierre, A. (1994). A linear matrix inequality approach to Hcontrol, International Journal of Robust and Nonlinear Control 4(4): 421–448.
  6. Haddad, W.M. and Chellaboina, V. (2011). Nonlinear Dynamical Systems and Control: A Lyapunov-based Approach, Princeton University Press, Princeton.
  7. Jafari, M. and Mobayen, S. (2019). Second-order sliding set design for a class of uncertain nonlinear systems with disturbances: An LMI approach, Mathematics and Computers in Simulation 156: 110–125, DOI: 10.1016/j.matcom.2018.06.015.
  8. Khalil, K.M. and Elshenawy, A. (2021). Robust model integral predictive control design for reference tracking dc servomechanism, 2021 10th International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, pp. 243–253.
  9. Kukurowski, N., Mrugalski, M., Pazera, M. and Witczak, M. (2022). Fault-tolerant tracking control for a non-linear twin-rotor system under ellipsoidal bounding, International Journal of Applied Mathematics and Computer Science 32(2): 171–183, DOI: 10.34768/amcs-2022-0013.
  10. Liu, H. and Khalil, H.K. (2019). Output feedback stabilization using super-twisting control and high-gain observer, International Journal of Robust and Nonlinear Control 29(3): 601–617.
  11. Luna, L., Asiain, E. and Garrido, R. (2020). Servo velocity control using a p+ ADOB controller, IFAC-PapersOnLine 53(2): 1300–1305.
  12. Ordaz, P., Ordaz, M., Cuvas, C. and Santos, O. (2019). Reduction of matched and unmatched uncertainties for a class of nonlinear perturbed systems via robust control, International Journal of Robust and Nonlinear Control 29(8): 2510–2524.
  13. Peng, C., Zhang, A. and Li, J. (2021). Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties, International Journal of Applied Mathematics and Computer Science 31(4): 635–645, DOI: 10.34768/amcs-2021-0044.
  14. Poznyak, A., Polyakov, A. and Azhmyakov, V. (2014). Attractive Ellipsoids in Robust Control, Springer, Boston.
  15. Rudenko, O. and Hedberg, C. (2013). Strong and weak nonlinear dynamics: Models, classification, examples, Acoustical Physics 59(6): 644–650.
  16. Ruderman, M. (2015). Presliding hysteresis damping of LuGre and Maxwell-slip friction models, Mechatronics 30: 225–230, DOI: 10.1016/j.mechatronics.2015.07.007.
  17. Sánchez, B., Cuvas, C., Ordaz, P., Santos-Sánchez, O. and Poznyak, A. (2019). Full-order observer for a class of nonlinear systems with unmatched uncertainties: Joint attractive ellipsoid and sliding mode concepts, IEEE Transactions on Industrial Electronics 67(7): 5677–5686.
  18. Shtessel, Y., Edwards, C., Fridman, L. and Levant, A. (2014). Sliding Mode Control and Observation, Springer, New York.
  19. Silva, J.M.A.-D., Edwards, C. and Spurgeon, S.K. (2009). Sliding-mode output-feedback control based on LMIs for plants with mismatched uncertainties, IEEE Transactions on Industrial Electronics 56(9): 3675–3683.
  20. Tsinias, J. and Theodosis, D. (2016). Luenberger-type observers for a class of nonlinear triangular control systems, IEEE Transactions on Automatic Control 61(12): 3797–3812.
  21. Utkin, V., Poznyak, A., Orlov, Y.V. and Polyakov, A. (2020). Road Map for Sliding Mode Control Design, Springer, Cham.
  22. Zhang, H., Zhao, X., Zhang, L., Niu, B., Zong, G. and Xu, N. (2022). Observer-based adaptive fuzzy hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems with input quantization, International Journal of Robust and Nonlinear Control 32(14): 8163–8185.
DOI: https://doi.org/10.61822/amcs-2024-0003 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 29 - 43
Submitted on: Jan 25, 2023
Accepted on: Oct 9, 2023
Published on: Mar 26, 2024
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Patricio Ordaz, Hugo Romero-Trejo, Carlos Cuvas, Omar Sandre, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.