Andrade-Da Silva, J.M., Edwards, C. and Spurgeon, S.K. (2009). Linear matrix inequality based dynamic output feedback sliding mode control for uncertain plants, American Control Conference, ACC’09, St. Louis, USA, pp. 763–768.
Atassi, A.N. and Khalil, H.K. (1999). A separation principle for the stabilization of a class of nonlinear systems, IEEE Transactions on Automatic Control 44(9): 1672–1687.
Cao, K., Qian, C. and Gu, J. (2023). Global sampled-data stabilization via static output feedback for a class of nonlinear uncertain systems, International Journal of Robust and Nonlinear Control 33(4): 2913–2929.
Gahinet, P. and Pierre, A. (1994). A linear matrix inequality approach to H∞ control, International Journal of Robust and Nonlinear Control 4(4): 421–448.
Jafari, M. and Mobayen, S. (2019). Second-order sliding set design for a class of uncertain nonlinear systems with disturbances: An LMI approach, Mathematics and Computers in Simulation 156: 110–125, DOI: 10.1016/j.matcom.2018.06.015.
Khalil, K.M. and Elshenawy, A. (2021). Robust model integral predictive control design for reference tracking dc servomechanism, 2021 10th International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, pp. 243–253.
Kukurowski, N., Mrugalski, M., Pazera, M. and Witczak, M. (2022). Fault-tolerant tracking control for a non-linear twin-rotor system under ellipsoidal bounding, International Journal of Applied Mathematics and Computer Science 32(2): 171–183, DOI: 10.34768/amcs-2022-0013.
Liu, H. and Khalil, H.K. (2019). Output feedback stabilization using super-twisting control and high-gain observer, International Journal of Robust and Nonlinear Control 29(3): 601–617.
Ordaz, P., Ordaz, M., Cuvas, C. and Santos, O. (2019). Reduction of matched and unmatched uncertainties for a class of nonlinear perturbed systems via robust control, International Journal of Robust and Nonlinear Control 29(8): 2510–2524.
Peng, C., Zhang, A. and Li, J. (2021). Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties, International Journal of Applied Mathematics and Computer Science 31(4): 635–645, DOI: 10.34768/amcs-2021-0044.
Sánchez, B., Cuvas, C., Ordaz, P., Santos-Sánchez, O. and Poznyak, A. (2019). Full-order observer for a class of nonlinear systems with unmatched uncertainties: Joint attractive ellipsoid and sliding mode concepts, IEEE Transactions on Industrial Electronics 67(7): 5677–5686.
Silva, J.M.A.-D., Edwards, C. and Spurgeon, S.K. (2009). Sliding-mode output-feedback control based on LMIs for plants with mismatched uncertainties, IEEE Transactions on Industrial Electronics 56(9): 3675–3683.
Tsinias, J. and Theodosis, D. (2016). Luenberger-type observers for a class of nonlinear triangular control systems, IEEE Transactions on Automatic Control 61(12): 3797–3812.
Zhang, H., Zhao, X., Zhang, L., Niu, B., Zong, G. and Xu, N. (2022). Observer-based adaptive fuzzy hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems with input quantization, International Journal of Robust and Nonlinear Control 32(14): 8163–8185.