Have a personal or library account? Click to login
Sirtuiny – enzymy o wielokierunkowej aktywności katalitycznej Cover

Sirtuiny – enzymy o wielokierunkowej aktywności katalitycznej

Open Access
|Mar 2021

References

  1. Bannister A.J., Kouzarides T.: Regulation of chromatin by histone modifications. Cell Res., 2011; 21: 381–395
  2. Barber M.F., Michishita-Kioi E., Xi Y., Tasselli L., Kioi M., Moqtaderi Z., Tennen R.I., Paredes S., Young N.L., Chen K., Struhl K., Garcia B.A., Gozani O., Li W., Chua K.F.: SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature, 2012; 487: 114–118
  3. Bordone L., Motta M.C., Picard F., Robinson A., Jhala U.S., Apfeld J., McDonagh T., Lemieux M., McBurney M., Szilvasi A., Easlon E.J., Lin S.J., Guarente L.: Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol., 2006; 4: e31
  4. Brunet A., Sweeney L.B., Sturgill J.F., Chua K.F., Greer P.L., Lin Y., Tran H., Ross S.E., Mostoslavsky R., Cohen H.Y., Hu L.S., Cheng H.L., Jedrychowski M.P., Gygi S.P., Sinclair D.A. i wsp.: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 2004; 303: 2011–2015
  5. Chen S., Seiler J., Santiago-Reichelt M., Felbel K., Grummt I., Voit R.: Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol. Cell, 2013; 52: 303–313
  6. Cheng Y., Ren X., Gowda A.S., Shan Y., Zhang L., Yuan Y.S., Patel R., Wu H., Huber-Keener K., Yang J.W., Liu D., Spratt T.E., Yang J.M.: Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis., 2013; 4: e731
  7. Christovam A.C., Theodoro V., Mendonça F.A., Esquisatto M.A., dos Santos G.M., do Amaral M.E.: Activators of SIRT1 in wound repair: An animal model study. Arch Dermatol Res., 2019; 311: 193–201
  8. Cimen H., Han M.J., Yang Y., Tong Q., Koc H., Koc E.C.: Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry., 2010; 49: 304–311
  9. Dominy J.E. Jr, Lee Y., Jedrychowski M.P., Chim H., Jurczak M.J., Camporez J.P., Ruan H.B., Feldman J., Pierce K., Mostoslavsky R., Denu J.M., Clish C.B., Yang X., Shulman G.I., Gygi S.P. i wsp.: The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol. Cell, 2012; 48: 900–913
  10. Dryden S.C., Nahhas F.A., Nowak J.E., Goustin A.S., Tainsky M.A.: Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell. Biol., 2003; 23: 3173–3185
  11. Du J., Zhou Y., Su X., Yu J.J., Khan S., Jiang H., Kim J., Woo J., Kim, J.H., Choi B.H., He B., Chen W., Zhang S., Cerione R.A., Auwerx J. i wsp.: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science, 2011; 334: 806–809
  12. Eckschlager T., Plch J., Stiborova M., Hrabeta J.: Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017; 18: 1414
  13. Espenshade P.J.: SREBPs: Sterol-regulated transcription factors. J. Cell Sci., 2006; 119: 973–976
  14. Fataftah N., Mohr C., Hajirezaei M.R., von Wirén N., Humbeck K.: Changes in nitrogen availability lead to a reprogramming of pyruvate metabolism. BMC Plant Biol., 2018; 18: 77
  15. Feldman J.L., Dittenhafer-Reed K.E., Denu J.M.: Sirtuin catalysis and regulation. J. Biol. Chem., 2012; 287: 42419–42427
  16. Finley L.W., Haas W., Desquiret-Dumas V., Wallace D.C., Procaccio V., Gygi S.P., Haigis M.C.: Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One, 2011; 6: e23295
  17. Flick F., Lüscher B.: Regulation of sirtuin function by posttranslational modifications. Front. Pharmacol., 2012; 3: 29
  18. Frye R.A.: Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun., 2000; 273: 793–798
  19. Gao D., Wang H., Xu Y., Zheng D., Zhang Q., Li W.: Protective effect of astaxanthin against contrast-induced acute kidney injury via SIRT1-p53 pathway in rats. Int. Urol. Nephrol., 2019; 51: 351–358
  20. GeneCards.: https://www.genecards.org (15.06.2020)
  21. Greiss S., Gartner A.: Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol. Cells, 2009; 28: 407–415
  22. Haigis M.C., Mostoslavsky R., Haigis K.M., Fahie K., Christodoulou D.C., Murphy A.J., Valenzuela D.M., Yancopoulos G.D., Karow M., Blander G., Wolberger C., Prolla T.A., Weindruch R., Alt F.W., Guarente L.: SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell., 2006; 126: 941–954
  23. Hallows W.C., Yu W., Denu J.M.: Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation. J. Biol. Chem., 2012; 287: 3850–3858
  24. Hikosaka K., Yaku K., Okabe K., Nakagawa T.: Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutr. Neurosci., 2019; DOI: 10.1080/1028415X.2019.1637504
  25. Horton J.D., Goldstein J.L., Brown M.S.: SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest., 2002; 109: 1125–1131
  26. Houtkooper R.H., Pirinen E., Auwerx J:. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol., 2012; 13: 225–238
  27. Hubbi M.E., Hu H., Kshitiz, Gilkes D.M., Semenza G.L.: Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J. Biol. Chem., 2013; 288: 20768–20775
  28. Jacobs K.M., Pennington J.D., Bisht K.S., Aykin-Burns N., Kim H.S., Mishra M., Sun L., Nguyen P., Ahn B.H., Leclerc J., Deng C.X., Spitz D.R., Gius D.: SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int. J. Biol. Sci., 2008; 4: 291–299
  29. Jeong J., Juhn K., Lee H., Kim S.H., Min B.H., Lee K.M., Cho M.H., Park G.H., Lee K.H.: SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp. Mol. Med., 2007; 39: 8–13
  30. Jęśko H., Strosznajder R.P.: Sirtuins and their interactions with transcription factors and poly(ADP-ribose) polymerases. Folia Neuropathol., 2016; 54: 212–233
  31. Jiang W., Wang S., Xiao M., Lin Y., Zhou L., Lei Q., Xiong Y., Guan K.L., Zhao S.: Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell., 2011; 43: 33–44
  32. Jing E., Gesta S., Kahn C.R.: SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab., 2007; 6: 105–114
  33. Jing H., Lin H.: Sirtuins in epigenetic regulation. Chem Rev., 2015; 115: 2350–2375
  34. Johnson C.A.: Chromatin modification and disease. J. Med. Genet., 2000; 37: 905–915
  35. Kahl G.: The dictionary of genomics, transcriptomics and proteomics. Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim 2015; Volume 1 A-D: 2156
  36. Kaidi A., Weinert B.T., Choudhary C., Jackson S.P.: Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science, 2010; 329: 1348–1353
  37. Karim M.F., Yoshizawa T., Sobuz S.U., Sato Y., Yamagata K.: Sirtuin 7-dependent deacetylation of DDB1 regulates the expression of nuclear receptor TR4. Biochem. Biophys. Res. Commun., 2017; 490: 423–428
  38. Kouzarides T.: Chromatin modifications and their function. Cell., 2007; 128: 693–705
  39. Kozako T., Suzuki T., Yoshimitsu M., Arima N., Honda S., Soeda S.: Anticancer agents targeted to sirtuins. Molecules, 2014; 19: 20295–20313
  40. Kupis W., Pałyga J., Tomal E., Niewiadomska E.: The role of sirtuins in cellular homeostasis. J. Physiol. Biochem., 2016; 72: 371–380
  41. Kyrylenko S., Kyrylenko O., Suuronen T., Salminen A.: Differential regulation of the Sir2 histone deacetylase gene family by inhibitors of class I and II histone deacetylases. Cell. Mol. Life Sci., 2003; 60: 1990–1997
  42. Landry J., Sutton A., Tafrov S.T., Heller R.C., Stebbins J., Pillus L., Sternglanz R.: The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA, 2000; 97: 5807–5811
  43. Langley E., Pearson M., Faretta M., Bauer U.M., Frye RA., Minucci S., Pelicci P.G., Kouzarides T.: Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J., 2002; 21: 2383–2396
  44. Laurent G., de Boer V.C., Finley L.W., Sweeney M., Lu H., Schug T.T., Cen Y., Jeong S.M., Li X., Sauve A.A., Haigis M.C.: SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation. Mol. Cell. Biol., 2013; 33: 4552–4561
  45. Laurent G., German N.J., Saha A.K., de Boer V.C., Davies M., Koves T.R., Dephoure N., Fischer F., Boanca G., Vaitheesvaran B., Lovitch S.B., Sharpe A.H., Kurland I.J., Steegborn C., Gygi S.P. i wsp: SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl-CoA decarboxylase. Mol. Cell., 2013; 50: 686–698
  46. Li L., Shi L., Yang S., Yan R., Zhang D., Yang J., He L., Li W., Yi X., Sun L., Liang J., Cheng Z., Shi L., Shang Y., Yu W.: SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat. Commun., 2016; 7: 12235
  47. Li W., Zhang B., Tang J., Cao Q., Wu Y., Wu C., Guo J., Ling E.A., Liang F.: Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating α-tubulin. J. Neurosci., 2007; 27: 2606–2616
  48. Lipska K., Filip A.A., Gumieniczek A.: Postępy w badaniach nad inhibitorami deacetylaz histonów jako lekami przeciwnowotworowymi. Postępy Hig. Med. Dośw., 2018; 72: 1018–1031
  49. Liszt G., Ford E., Kurtev M., Guarente L.: Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem., 2005; 280: 21313–21320
  50. Lombard D.B., Alt F.W., Cheng H.L., Bunkenborg J., Streeper R.S., Mostoslavsky R., Kim J., Yancopoulos G., Valenzuela D., Murphy A., Yang Y., Chen Y., Hirschey M.D., Bronson R.T., Haigis M. i wsp.: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol., 2007; 27: 8807–8814
  51. Luo J., Nikolaev A.Y., Imai S., Chen D., Su F., Shiloh A., Guarente L., Gu W.: Negative control of p53 by Sir2α promotes cell survival under stress. Cell., 2001; 107: 137–148
  52. Luo K., Huang W., Tang S.: Sirt3 enhances glioma cell viability by stabilizing Ku70-BAX interaction. Onco Targets Ther., 2018; 11: 7559–7567
  53. Mao Z., Hine C., Tian X., Van Meter M., Au M., Vaidya A., Seluanov A., Gorbunova V.: SIRT6 promotes DNA repair under stress by activating PARP1. Science, 2011; 332: 1443–1446
  54. Mathias R.A., Greco T.M., Cristea I.M.: Identification of sirtuin4 (SIRT4) protein interactions: Uncovering candidate acyl-modified mitochondrial substrates and enzymatic regulators. Methods Mol. Biol., 2016; 1436: 213–239
  55. Mathias R.A., Greco T.M., Oberstein A., Budayeva H.G., Chakrabarti R., Rowland E.A., Kang Y., Shenk T., Cristea I.M.: Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell., 2014; 159: 1615–1625
  56. Matsushita N., Yonashiro R., Ogata Y., Sugiura A., Nagashima S., Fukuda T., Inatome R., Yanagi S.: Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes Cells, 2011; 16: 190–202
  57. Maxwell P.H., Pugh C.W., Ratcliffe P.J.: The pVHL-hIF-1 system. A key mediator of oxygen homeostasis. Adv. Exp. Med. Biol., 2001; 502: 365–376
  58. McCord R.A., Michishita E., Hong T., Berber E., Boxer L.D., Kusumoto R., Guan S., Shi X., Gozani O., Burlingame A.L., Bohr V.A., Chua K.F.: SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging, 2009; 1: 109–121
  59. Mei Z., Zhang X., Yi J., Huang J., He J., Tao Y.: Sirtuins in metabolism, DNA repair and cancer. J. Exp. Clin. Cancer Res., 2016; 35: 182
  60. Meijer A.J., Lamers W.H., Chamuleau R.A.: Nitrogen metabolism and ornithine cycle function. Physiol Rev., 1990; 70: 701–748
  61. Michan S., Sinclair D.: Sirtuins in mammals: Insights into their biological function. Biochem. J., 2007; 404: 1–13
  62. Michishita E., McCord R.A., Berber E., Kioi M., Padilla-Nash H., Damian M., Cheung P., Kusumoto R., Kawahara T.L., Barrett J.C., Chang H.Y., Bohr V.A., Ried T., Gozani O., Chua K.F.: SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature, 2008; 452: 492–496
  63. Muth V., Nadaud S., Grummt I., Voit R.: Acetylation of TAFI68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBO J., 2001; 20: 1353–1362
  64. Nakae J., Oki M., Cao Y.: The FoxO transcription factors and metabolic regulation. FEBS Lett., 2008; 582: 54–67
  65. Nakagawa T., Lomb D.J., Haigis M.C., Guarente L.: SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell, 2009; 137: 560–570
  66. Nakamura Y., Ogura M., Ogura K., Tanaka D., Inagaki N.: SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice. FEBS Lett., 2012; 586: 4076–4081
  67. Nishida Y., Rardin M.J., Carrico C., He W., Sahu A.K., Gut P., Najjar R., Fitch M., Hellerstein M., Gibson B.W., Verdin E.: SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol. Cell., 2015; 59: 321–332
  68. North B.J., Marshall B.L., Borra M.T., Denu J.M., Verdin E.: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell, 2003; 11: 437–444
  69. Obsil T., Obsilova V.: Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene, 2008; 27: 2263–2275
  70. Osborne T.F., Espenshade P.J.: Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: What a long, strange tRIP it’s been. Genes Dev., 2009; 23: 2578–2591
  71. Park J., Chen Y., Tishkoff D.X., Peng C., Tan M., Dai L., Xie Z., Zhang Y., Zwaans B.M., Skinner M.E., Lombard D.B., Zhao Y.: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell, 2013; 50: 919–930
  72. Peng C., Lu Z., Xie Z., Cheng Z., Chen Y., Tan M., Luo H., Zhang Y., He W., Yang K., Zwaans B.M., Tishkoff D., Ho L., Lombard D., He T.C. i wsp.: The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell Proteomics, 2011; 10: M111.012658
  73. Picard F., Kurtev M., Chung N., Topark-Ngarm A., Senawong T., Machado de Oliviera R., Leid M., McBurney M.W., Guarente L.: Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature, 2004; 429: 771–776
  74. Polletta L., Vernucci E., Carnevale I., Arcangeli T., Rotili D., Palmerio S., Steegborn C., Nowak T., Schutkowski M., Pellegrini L., Sansone L., Villanova L., Runci A., Pucci B., Morgante E. i wsp.: SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy, 2015; 11: 253–270
  75. Ponugoti B., Kim D.H., Xiao Z., Smith Z., Miao J., Zang M., Wu S.Y., Chiang C.M., Veenstra T.D., Kemper J.K.: SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem., 2010; 285: 33959–33970
  76. Ramsey K.M., Mills K.F., Satoh A., Imai S.I.: Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell, 2008; 7: 78–88
  77. Rangarajan P., Karthikeyan A., Lu J., Ling E.A., Dheen S.T.: Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia. Neuroscience, 2015; 311: 398–414
  78. Rardin M.J., He W., Nishida Y., Newman J.C., Carrico C., Danielson S.R., Guo A., Gut P., Sahu A.K,. Li B., Uppala R., Fitch M., Riiff T., Zhu L., Zhou J. i wsp.: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab., 2013; 18: 920–933
  79. Rodgers J.T., Lerin C., Gerhart-Hines Z., Puigserver P.: Metabolic adaptations through the PGC-1α and SIRT1 pathways. FEBS Lett., 2008; 582: 46–53
  80. Rodgers J.T., Lerin C., Haas W., Gygi S.P., Spiegelman B.M., Puigserver P.: Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature, 2005; 434: 113–118
  81. Rodgers J.T., Puigserver P.: Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl. Acad. Sci. USA, 2007; 104: 12861–12866
  82. Rorbach-Dolata A., Kubis A., Piwowar A.: Modyfikacje epigenetyczne – ważny mechanizm w zaburzeniach cukrzycy. Postępy Hig. Med. Dośw., 2017; 71: 960–974
  83. Ryu D., Jo Y.S., Lo Sasso G., Stein S., Zhang H., Perino A., Lee J.U., Zeviani M., Romand R., Hottiger M.O., Schoonjans K., Auwerx J.: A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell. Metab., 2014; 20: 856–869
  84. Sanders B.D., Jackson B., Marmorstein R.: Structural basis for sirtuin function: What we know and what we don’t. Biochim. Biophys. Acta, 2010; 1804: 1604–1616
  85. Scher M.B., Vaquero A., Reinberg D.: SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev., 2007; 21: 920–928
  86. Schiedel M., Robaa D., Rumpf T., Sippl W., Jung M.: The current state of NAD+-dependent histone deacetylases (sirtuins) as novel therapeutic targets. Med. Res. Rev., 2017; 37: 147–200
  87. Schwer B., North B.J., Frye R.A., Ott M., Verdin E.: The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J. Cell. Biol., 2002; 158: 647–657
  88. Selak M.A., Armour S.M., MacKenzie E.D., Boulahbel H., Watson D.G., Mansfield K.D., Pan Y., Simon M.C., Thompson C.B., Gottlieb E.: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell, 2005; 7: 77–85
  89. Semenza G.L.: Regulation of oxygen homeostasis by hypoxiainducible factor 1. Physiology, 2009; 24: 97–106
  90. Shin J., He M., Liu Y., Paredes S., Villanova L., Brown K., Qiu X., Nabavi N., Mohrin M., Wojnoonski K. Li P., Cheng H.L., Murphy A.J., Valenzuela D.M., Luo H. i wsp.: SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep., 2013; 5: 654–665
  91. Siedlecka K., Bogusławski W.: Sirtuiny – enzymy długowieczności? Gerontol. Pol., 2005; 13: 147–152
  92. Snyder C.A., Goodson M.L., Schroeder A.C., Privalsky M.L.: Regulation of corepressor alternative mRNA splicing by hormonal and metabolic signaling. Mol. Cell. Endocrinol., 2015; 413: 228–235
  93. Sundaresan N.R., Samant S.A., Pillai V.B., Rajamohan S.B., Gupta M.P.: SIRT3 is a stress responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol. Cell. Biol., 2008; 28: 6384–6401
  94. Tan M., Peng C., Anderson K.A., Chhoy P., Xie Z., Dai L., Park J., Chen Y., Huang H., Zhang Y., Ro J., Wagner G.R., Green M.F., Madsen A.S., Schmiesing J. i wsp.: Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell. Metab., 2014; 19: 605–617
  95. Tavares C.D., Sharabi K., Dominy J.E., Lee Y., Isasa M., Orozco J.M., Jedrychowski M.P., Kamenecka T.M., Griffin P.R., Gygi S.P., Puigserver P.: The methionine transamination pathway controls hepatic glucose metabolism through regulation of the GCN5 acetyltransferase and the PGC-1α transcriptional coactivator. J. Biol. Chem., 2016; 291: 10635–10645
  96. Tennen R.I., Bua D.J., Wright W.E., Chua K.F.: SIRT6 is required for maintenance of telomere position effect in human cells. Nat. Commun., 2011; 2: 433
  97. Tsai Y.C., Greco T.M., Cristea I.M.: Sirtuin7 plays a role in ribosome biogenesis and protein synthesis. Mol. Cell. Proteomics, 2014; 13: 73–83
  98. van der Horst A., Tertoolen L.G., de Vries-Smits L.M., Frye R.A., Medema R.H., Burgering B.M.: FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J. Biol. Chem., 2004; 279: 28873–28879
  99. Vaquero A., Scher M., Lee D., Erdjument-Bromage H., Tempst P., Reinberg D.: Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell., 2004; 16: 93–105
  100. Vaquero A., Scher M.B., Lee D.H., Sutton A., Cheng H.L., Alt F.W., Serrano L., Sternglanz R., Reinberg D.: SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev., 2006; 20: 1256–1261
  101. Vaziri H., Dessain S.K., Ng Eaton E., Imai S.I., Frye R.A., Pandita T.K., Guarente L., Weinberg R.A.: hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 2001; 107: 149–159
  102. Walker A.K., Yang F., Jiang K., Ji J.Y., Watts J.L., Purushotham A,. Boss O., Hirsch M.L., Ribich S., Smith J.J., Israelian K., Westphal C.H., Rodgers J.T., Shioda T., Elson S.L. i wsp.: Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev., 2010; 24: 1403–1417
  103. Wang F., Chan C.H., Chen K., Guan X., Lin H.K., Tong Q.: Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene, 2012; 31: 1546–1557
  104. Wang F., Nguyen M., Qin F.X., Tong Q.: SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell, 2007; 6: 505–514
  105. Wang F., Tong Q.: SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARγ. Mol. Biol. Cell, 2009; 20: 801–808
  106. Webb A.E., Brunet A.: FOXO transcription factors: Key regulators of cellular quality control. Trends Biochem. Sci., 2014; 39: 159–169
  107. Wiercińska M., Rosołowska-Huszcz D.: Naturalne i syntetyczne modulatory aktywności sirtuin. Kosmos, 2017; 66: 365–377
  108. Yamamoto H., Schoonjans K., Auwerx J.: Sirtuin functions in health and disease. Mol. Endocrinol., 2007; 21: 1745–1755
  109. Yang B., Zwaans B.M., Eckersdorff M., Lombard D.B.: The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle, 2009; 8: 2662–2663
  110. Yang S.R., Wright J., Bauter M., Seweryniak K., Kode A., Rahman I.: Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-κB in macrophages in vitro and in rat lungs in vivo: Implications for chronic inflammation and aging. Am. J. Physiol. Lung Cell Mol. Physiol., 2007; 292: L567–L576
  111. Yeung F., Hoberg J.E., Ramsey C.S., Keller M.D., Jones D.R., Frye R.A., Mayo M.W.: Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J., 2004; 23: 2369–2380
  112. Zhang M., Pan Y., Dorfman R.G., Yin Y., Zhou Q., Huang S., Liu J., Zhao S.: Sirtinol promotes PEPCK1 degradation and inhibits gluconeogenesis by inhibiting deacetylase SIRT2. Sci Rep., 2017; 7: 7
  113. Zhang P.Y., Li G., Deng Z.J., Liu L.Y., Chen L., Tang J.Z., Wang Y.Q., Cao S.T., Fang Y.X., Wen F., Xu Y., Chen X., Shi K.Q., Li W.F., Xie C. i wsp.: Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents. Nucleic Acids Res., 2016; 44: 3629–3642
  114. Zhao S., Xu W., Jiang W., Yu W., Lin Y., Zhang T., Yao J., Zhou L., Zeng Y., Li H., Li Y., Shi J., An W., Hancock S.M., He F. i wsp.: Regulation of cellular metabolism by protein lysine acetylation. Science, 2010; 327: 1000–1004
  115. Zhao T., Alam H.B., Liu B., Bronson R.T., Nikolian V.C., Wu E., Chong W., Li Y.: Selective inhibition of SIRT2 improves outcomes in a lethal septic model. Curr. Mol. Med., 2015; 15: 634–641
  116. Zhong L., Mostoslavsky R.: SIRT6: A master epigenetic gate-keeper of glucose metabolism. Transcription, 2010; 1: 17–21
  117. Zhong L., D’Urso A., Toiber D., Sebastian C., Henry R.E., Vadysirisack D.D., Guimaraes A., Marinelli B., Wikstrom J.D., Nir T., Clish C.B., Vaitheesvaran B., Iliopoulos O., Kurland I., Dor Y. i wsp.: The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell, 2010; 140: 280–293
Language: English
Page range: 152 - 174
Submitted on: Mar 26, 2020
Accepted on: Nov 9, 2020
Published on: Mar 4, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2021 Ewa Maria Kratz, Katarzyna Sołkiewicz, Agnieszka Kaczmarek, Agnieszka Piwowar, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.