Have a personal or library account? Click to login
Style-Based Composer Identification and Attribution of Symbolic Music Scores: A Systematic Survey Cover

Style-Based Composer Identification and Attribution of Symbolic Music Scores: A Systematic Survey

Open Access
|Jul 2025

References

  1. Alvarez, D. A. P., Gelbukh, A., and Sidorov, G. (2024). Composer classification using melodic combinatorial n‑grams. Expert Systems with Applications, 249, 123300.
  2. Backer, E., and van Kranenburg, P. (2005). On musical stylometry—A pattern recognition approach. Pattern Recognition Letters, 26(3), 299309.
  3. Brinkman, A., Shanahan, D., and Sapp, C. (2016). Musical stylometry, machine learning, and attribution studies: A semi‑supervised approach to the works of Josquin. In Proceedings of the 14th International Conference on Music Perception and Cognition, pp. 9197.
  4. Bruder, I., Ignatova, T., and Milewski, L. (2004). Knowledge‑based scribe recognition in historical music archives. In R. Heery and L. Lyon (Eds.), Research and Advanced Technology for Digital Libraries (pp. 304316). Springer.
  5. Chan, M., and Potter, J. (2006). Recognition of musically similar polyphonic music. In 18th International Conference on Pattern Recognition (ICPR’06), Vol. 4, pp. 809812.
  6. Chicco, D., Tötsch, N., and Jurman, G. (2021). The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two‑class confusion matrix evaluation. BioData Mining, 14, 13.
  7. Chou, Y.‑H., Chen, I.‑C., Chang, C.‑J., Ching, J., and Yang, Y.‑H. (2021). MidiBERT‑piano: Large‑scale pre‑training for symbolic music understanding. arXiv:2107.05223.
  8. Christen, P., Hand, D. J., and Kirielle, N. (2023). A review of the F‑measure: Its history, properties, criticism, and alternatives. ACM Computing Surveys, 55(12), 137.
  9. Costa, L. F. P., and Coca, S. A. E. (2018). Characterization and identification of twelve‑tone composers. In Encontro Nacional de Inteligência Artificial e Computacional (ENIAC), pp. 763774. SBC.
  10. Costantini, G., Casali, D., and Carota, M. (2006). Automatic recognition of piano music compositional styles. In Proceedings of the 10th WSEAS International Conference on Systems, ICS’06, Stevens Point, Wisconsin, USA, pp. 791794. World Scientific and Engineering Academy and Society (WSEAS).
  11. Cruz‑Alcázar, P. P., Vidal‑Ruiz, E., and Pérez‑Cortés, J. C. (2003). Musical style identification using grammatical inference: The encoding problem. In A. Sanfeliu and J. Ruiz‑Shulcloper (Eds.), Progress in Pattern Recognition, Speech and Image Analysis, Lecture Notes in Computer Science (pp. 375382). Springer.
  12. Cumming, J., McKay, C., Stuchbery, J., and Fujinaga, I. (2018). Methodologies for creating symbolic corpora of Western music before 1600. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, pp. 491498. ISMIR.
  13. Cuthbert, M. S., Ariza, C., and Friedland, L. (2011). Feature extraction and machine learning on symbolic music using the music21 toolkit. In A. Klapuri and C. Leider (Eds.), Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR) (pp. 387392). University of Miami.
  14. Depeweg, S., Hernández‑Lobato, J. M., Doshi‑Velez, F., and Udluft, S. (2017). Decomposition of uncertainty in Bayesian deep learning for efficient and risk‑sensitive learning. In Proceedings of the 34th International Conference on Machine Learning, pp. 11841193. PMLR.
  15. Doerfler, G., and Beck, R. (2013). An approach to classifying four‑part music. In Proceedings of the 2013 International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV 2013), Vol. 2, pp. 787794.
  16. Dor, O., and Reich, Y. (2011). An evaluation of musical score characteristics for automatic classification of composers. Computer Music Journal, 35(3), 8697.
  17. Fornés, A., Dutta, A., Gordo, A., and Lladós, J. (2012). CVC‑MUSCIMA: A ground truth of handwritten music score images for writer identification and staff removal. International Journal on Document Analysis and Recognition, 15(3), 243251.
  18. Fornés, A., and Lladós, J. (2010). A symbol‑dependent writer identification approach in old handwritten music scores. In 2010 12th International Conference on Frontiers in Handwriting Recognition, pp. 634639. IEEE Computer Society.
  19. Fornés, A., Lladós, J., Sánchez, G., and Bunke, H. (2008). Writer identification in old handwritten music scores. In 2008 The Eighth IAPR International Workshop on Document Analysis Systems, pp. 347353. IEEE.
  20. Fornés, A., Lladós, J., Sánchez, G., and Bunke, H. (2009). On the use of textural features for writer identification in old handwritten music scores. In 2009 10th International Conference on Document Analysis and Recognition, pp. 9961000. IEEE.
  21. Fornés, A., Lladós, J., Sánchez, G., Otazu, X., and Bunke, H. (2010). A combination of features for symbol‑independent writer identification in old music scores. International Journal on Document Analysis and Recognition, 13(4), 243259.
  22. Foscarin, F., Hoedt, K., Praher, V., Flexer, A., and Widmer, G. (2022). Concept‑based techniques for “musicologist‑friendly” explanations in a deep music classifier. In Proceedings of the 23rd International Society for Music Information Retrieval Conference (ISMIR), Bengaluru, India, pp. 792799.
  23. Fucks, W. (1962a). Mathematical analysis of formal structure of music. IRE Transactions on Information Theory, 8(5), 225228.
  24. Fucks, W. (1962b). Musical analysis by mathematics. Gravesano Review, 6(23), 146155.
  25. Gabura, A. J., and Oliver, J. R. (1965). Undergraduate research in computer sciences: Computer analysis of musical style. In Proceedings of the 1965 20th National Conference, ACM ’65, New York, NY, USA, pp. 303314. Association for Computing Machinery.
  26. Gelbukh, A., Pérez Álvarez, D. A., Kolesnikova, O., Chanona‑Hernández, L., and Sidorov, G. (2024). Multiinstrument based N‑grams for composer classification task. Computación y Sistemas, 28(1), 8598.
  27. Glickman, M., Brown, J., and Song, R. (2019). (A) data in the life: Authorship attribution in Lennon–McCartney songs. Harvard Data Science Review, 1(1).
  28. Göcke, R. (2003). Building a system for writer identification on handwritten music scores. In Proceedings of the 2003 International Conference on Signal Processing, Pattern Recognition, and Applications, pp. 430435. ACTA Press.
  29. Haddaway, N. R., Page, M. J., Pritchard, C. C., and McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020‑compliant flow diagrams, with interactivity for optimised digital transparency and open synthesis. Campbell Systematic Reviews, 18(2), e1230.
  30. Hajj, N., Filo, M., and Awad, M. (2018). Automated composer recognition for multi‑voice piano compositions using rhythmic features, n‑grams and modified cortical algorithms. Complex & Intelligent Systems, 4(1), 5565.
  31. Hedges, T., Roy, P., and Pachet, F. (2014). Predicting the composer and style of jazz chord progressions. Journal of New Music Research, 43(3), 276290.
  32. Herlands, W., Der, R., Greenberg, Y., and Levin, S. (2014). A machine learning approach to musically meaningful homogeneous style classification. Proceedings of the AAAI Conference on Artificial Intelligence, 28(1), 17.
  33. Herremans, D., Martens, D., and Sörensen, K. (2016). Composer classification models for music‑theory building. In D. Meredith (Ed.), Computational Music Analysis (pp. 369392). Springer International Publishing.
  34. Herremans, D., Sörensen, K., and Martens, D. (2015). Classification and generation of composer‑specific music using global feature models and variable neighborhood search. Computer Music Journal, 39(3), 7191.
  35. Hiller, L. A., Jr., and Isaacson, L. M. (1958). Musical composition with a high‑speed digital computer. Journal of the Audio Engineering Society, 6(3), 154160.
  36. Hillewaere, R., Manderick, B., and Conklin, D. (2010). String quartet classification with monophonic models. In J. S. Downie and R. C. Veltkamp (Eds.), Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR) (pp. 537542). International Society for Music Information Retrieval.
  37. Hontanilla, M., Pérez‑Sancho, C., and Iñesta, J. M. (2011). Composer recognition using language models. In Proceedings of the 2011 International Conference on Signal Processing, Pattern Recognition, and Applications / 722: Computer Graphics and Imaging, pp. 148152. ACTA Press.
  38. Hontanilla, M., Pérez‑Sancho, C., and Iñesta, J. M. (2013). Modeling musical style with language models for composer recognition. In J. M. Sanches, L. Micó, and J. S. Cardoso (Eds.), Pattern Recognition and Image Analysis, Lecture Notes in Computer Science (pp. 740748). Springer.
  39. Hörnel, D., and Menzel, W. (1998). Learning musical structure and style with neural networks. Computer Music Journal, 22(4), 4462.
  40. Hsiao, W.‑Y., Liu, J.‑Y., Yeh, Y.‑C., and Yang, Y.‑H. (2021). Compound Word Transformer: Learning to compose full‑song music over dynamic directed hypergraphs. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, pp. 178186. Association for the Advancement of Artificial Intelligence (AAAI).
  41. Huang, Y.‑S., and Yang, Y.‑H. (2020). Pop Music Transformer: Beat‑based modeling and generation of expressive pop piano compositions. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle WA, USA, pp. 11801188. Association for Computing Machinery.
  42. Johnson, M. (1993). Neural networks and style analysis: A neural network that recognizes Bach chorale style. In Atti del X Colloquio di Informatica Musicale. Milan: Associazione Di Informatica Musicale Italiana, pp. 109116.
  43. Junior, A. D. D. C., and Batista, L. V. (2012). Composer classification in symbolic data using PPM. In 2012 11th International Conference on Machine Learning and Applications, Vol. 2, pp. 345350. IEEE.
  44. Juola, P. (2007). Authorship attribution. Foundations and Trends in Information Retrieval, 1(3), 233334.
  45. Kaliakatsos‑Papakostas, M. A., Epitropakis, M. G., and Vrahatis, M. N. (2010). Musical composer identification through probabilistic and feedforward neural networks. In C. Di Chio, A. Brabazon, G. A. Di Caro, M. Ebner, M. Farooq, A. Fink, J. Grahl, G. Greenfield, P. Machado, M. O’Neill, E. Tarantino, and N. Urquhart (Eds.), Applications of Evolutionary Computation, Lecture Notes in Computer Science (pp. 411420). Springer.
  46. Kaliakatsos‑Papakostas, M. A., Epitropakis, M. G., and Vrahatis, M. N. (2011). Weighted Markov chain model for musical composer identification. In C. Di Chio, A. Brabazon, G. A. Di Caro, R. Drechsler, M. Farooq, J. Grahl, G. Greenfield, C. Prins, J. Romero, G. Squillero, E. Tarantino, A. G. B. Tettamanzi, N. Urquhart, and A. Ş. Uyar (Eds.), Applications of Evolutionary Computation, Lecture Notes in Computer Science (pp. 334343). Springer.
  47. Karystinaios, E., Foscarin, F., and Widmer, G. (2024). Perception‑inspired graph convolution for music understanding tasks. In Proceedings of the Thirty‑third International Joint Conference on Artificial Intelligence, Jeju, South Korea, pp. 76817689. International Joint Conferences on Artificial Intelligence Organization.
  48. Karystinaios, E., Guichaoua, C., Andreatta, M., Bigo, L., and Bloch, I. (2020). Musical genre descriptor for classification based on Tonnetz trajectories. In Journées d’Informatique Musicale, Strasbourg, France, pp. 18.
  49. Kempfert, K. C., and Wong, S. W. K. (2020). Where does Haydn end and Mozart begin? Composer classification of string quartets. Journal of New Music Research, 49(5), 457476.
  50. Knopoff, L., and Hutchinson, W. (1983). Entropy as a measure of style: The influence of sample length. Journal of Music Theory, 27(1), 7597.
  51. Kong, Q., Choi, K., and Wang, Y. (2020). Large‑scale MIDI‑based composer classification. arXiv:2010.14805.
  52. Lee, H. Y., Kim, S., Park, S., Choi, K., and Lee, J. (2020). Deep composer classification using symbolic representation. In Proceedings of the 21st International Society for Music Information Retrieval Conference (ISMIR), Montreal, Canada, pp. 604611.
  53. Lisena, P., Meroño‑Peñuela, A., and Troncy, R. (2022). MIDI2vec: Learning MIDI embeddings for reliable prediction of symbolic music metadata. Semantic Web, 13(3), 357377.
  54. Llorens, A., Simonetta, F., Serrano, M., and Torrente, Á. (2023). Musif: A Python package for symbolic music feature extraction. In Proceedings of the Sound and Music Computing Conference, Stockholm, Sweden, pp. 18.
  55. Ludovico, L. A., Baratè, A., Simonetta, F., and Mauro, D. A. (2019). On the adoption of standard encoding formats to ensure interoperability of music digital archives: The IEEE 1599 format. In Proceedings of the 6th International Conference on Digital Libraries for Musicology, pp. 2024. Association for Computing Machinery.
  56. Machado, P., Romero, J., Santos, M. L., Cardoso, A., and Manaris, B. (2004). Adaptive critics for evolutionary artists. In G. R. Raidl, S. Cagnoni, J. Branke, D. W. Corne, R. Drechsler, Y. Jin, C. G. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G. D. Smith, and G. Squillero (Eds.), Applications of Evolutionary Computing, Lecture Notes in Computer Science (pp. 437446). Springer.
  57. Marques, V. M., and Reis, C. (2013). Recognizing music styles—An approach based on the Zipf‑Mandelbrot law. In A. Madureira, C. Reis, and V. Marques (Eds.), Computational Intelligence and Decision Making, Intelligent Systems, Control and Automation: Science and Engineering (pp. 439448). Springer Netherlands.
  58. McKay, C., Cumming, J., and Fujinaga, I. (2018). jSymbolic 2.2: Extracting features from symbolic music for use in musicological and MIR research. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, pp. 348354.
  59. Mearns, L., Tidhar, D., and Dixon, S. (2010). Characterisation of composer style using high‑level musical features. In Proceedings of the 3rd International Workshop on Machine Learning and Music, MML ’10, Firenze Italy, pp. 3740. Association for Computing Machinery.
  60. Mendel, A. (1969). Some preliminary attempts at computer‑assisted style analysis in music. Computers and the Humanities, 4(1), 4152.
  61. Mirza, F. K., Baykaş, T., Hekimoğlu, M., Pekcan, Ö., and Tunçay, G. P. (2024). Decoding compositional complexity: Identifying composers using a model fusion‑based approach with nonlinear signal processing and chaotic dynamics. Chaos, Solitons & Fractals, 187, 115450.
  62. Mondol, T., and Brown, D. G. (2021). Grammar‑based compression and its use in symbolic music analysis. Journal of Mathematics and Music, 15(2), 135165.
  63. Naccache, M., Borgi, A., and Ghédira, K. (2009). A learning‑based model for musical data representation using histograms. In S. Ystad, R. Kronland‑Martinet, and K. Jensen (Eds.), Computer Music Modeling and Retrieval: Genesis of Meaning in Sound and Music, Lecture Notes in Computer Science (pp. 207215). Springer.
  64. Nakamura, E., and Takaki, S. (2015). Characteristics of polyphonic music style and Markov model of pitch‑class intervals. In T. Collins, D. Meredith, and A. Volk (Eds.), Mathematics and Computation in Music (Vol. 9110, pp. 109114). Springer International Publishing.
  65. Neto, A., and Pereira, R. L. (2017). Methods on composer identification using Markov chains. In Proceedings of the 16th Brazilian Symposium on Computer Music, São Paulo, Brazil, pp. 18.
  66. Niitsuma, M., Schomaker, L., van Oosten, J.‑P., and Tomita, Y. (2013). Writer identification in old music manuscripts using contour‑hinge feature and dimensionality reduction with an autoencoder. In R. Wilson, E. Hancock, A. Bors, and W. Smith (Eds.), Computer Analysis of Images and Patterns (pp. 555562). Springer.
  67. Niitsuma, M., Schomaker, L., van Oosten, J.‑P., Tomita, Y., and Bell, D. (2016). Musicologist‑driven writer identification in early music manuscripts. Multimedia Tools and Applications, 75(11), 64636479.
  68. Pollastri, E., and Simoncelli, G. (2001). Classification of melodies by composer with hidden Markov models. In Proceedings of the First International Conference on WEB Delivering of Music. WEDELMUSIC 2001, pp. 8895. IEEE.
  69. Pugin, L. (2015). The challenge of data in digital musicology. Frontiers in Digital Humanities, 2, 4.
  70. Rudman, J. (2012). The state of non‑traditional authorship attribution studies—2012: Some problems and solutions. English Studies, 93(3), 259274.
  71. Ruppin, A., and Yeshurun, H. (2006). MIDI music genre classification by invariant features. In Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR), Victoria, Canada, pp. 397399.
  72. Sadeghian, P., Wilson, C., Goeddel, S., and Olmsted, A. (2017). Classification of music by composer using fuzzy min‑max neural networks. In 2017 12th International Conference for Internet Technology and Secured Transactions (ICITST), pp. 189192. IEEE.
  73. Sapp, C. S. (2005). Online database of scores in the Humdrum file format. In Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR), London, UK, pp. 664665.
  74. Sculley, D., and Pasanek, B. M. (2008). Meaning and mining: The impact of implicit assumptions in data mining for the humanities. Literary and Linguistic Computing, 23(4), 409424.
  75. Shan, M.‑K., Kuo, F.‑F., and Chen, M.‑F. (2002). Music style mining and classification by melody. In Proceedings of the IEEE International Conference on Multimedia and Expo, Vol. 1, pp. 97100. IEEE.
  76. Simonetta, F., Cancino‑Chacón, C. E., Ntalampiras, S., and Widmer, G. (2019). A convolutional approach to melody line identification in symbolic scores. In Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, pp. 924931. ISMIR.
  77. Simonetta, F., Llorens, A., Serrano, M., García‑Portugués, E., and Torrente, Á. (2023). Optimizing feature extraction for symbolic music. In Proceedings of the 24th International Society for Music Information Retrieval Conference (ISMIR), Milan, Italy, pp. 18.
  78. Siromoney, G., and Rajagopalan, K. R. (1964). Style as information in Karnatic music. Journal of Music Theory, 8(2), 267272.
  79. Sturm, B. L. (2014). The state of the art ten years after a state of the art: Future research in music information retrieval. Journal of New Music Research, 43(2), 147172.
  80. Takamoto, A., Hironaka, S., and Umemura, K. (2024). Composer classification using maximum probability partitioning based on compression principles. Transactions of the Japanese Society for Artificial Intelligence, 39(1), F‑NA1.
  81. Takamoto, A., Umemura, M., Yoshida, M., and Umemura, K. (2016). Improving compression based dissimilarity measure for music score analysis. In 2016 International Conference on Advanced Informatics: Concepts, Theory and Application (ICAICTA), pp. 15. IEEE.
  82. Tan, L., Jin, C., Cheng, Z., Lv, X., and Song, L. (2019). Music style classification with compared methods in XGB and BPNN. In 2019 IEEE/ACIS 18th International Conference on Computer and Information Science (ICIS), pp. 403407. IEEE.
  83. Valdenegro‑Toro, M., and Mori, D. S. (2022). A deeper look into aleatoric and epistemic uncertainty disentanglement. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (Cvprw), pp. 15081516. IEEE.
  84. van Kranenburg, P. (2008). On measuring musical style—The case of some disputed organ fugues in the J. S. Bach (BWV) catalogue. Computing in Musicology, 15, 165178.
  85. van Kranenburg, P., and Backer, E. (2005). Musical style recognition—A quantitative approach. In Handbook of Pattern Recognition and Computer Vision (pp. 583600). World Scientific.
  86. van Nuss, J., Giezeman, G. J., and Wiering, F. (2017). Melody retrieval and composer attribution using sequence alignment on RISM incipits. In Proceedings of TENOR 2017, A Coruña, Spain, pp. 7989.
  87. Velarde, G., Cancino Chacón, C., Meredith, D., Weyde, T., and Grachten, M. (2018). Convolution‑based classification of audio and symbolic representations of music. Journal of New Music Research, 47(3), 191205.
  88. Velarde, G., Weyde, T., Cancino Chacón, C., Meredith, D., and Grachten, M. (2016). Composer recognition based on 2D‑filtered piano‑rolls. In Proceedings of the 17th International Society for Music Information Retrieval Conference (ISMIR), New York, NY, USA, pp. 115121.
  89. Verma, H., and Thickstun, J. (2019). Convolutional composer classification. In Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, pp. 549556.
  90. Westhead, M. D., and Smaill, A. (1994). Automatic characterisation of musical style. In M. Smith, A. Smaill, and G. A. Wiggins (Eds.), Music Education: An Artificial Intelligence Approach, Workshops in Computing (pp. 157170). Springer.
  91. Wołkowicz, J., and Kešelj, V. (2013). Evaluation of n‑gram‑based classification approaches on classical music corpora. In J. Yust, J. Wild, and J. A. Burgoyne (Eds.), Mathematics and Computation in Music, Lecture Notes in Computer Science (pp. 213225). Springer.
  92. Wołkowicz, J., Kulka, Z., and Kešelj, V. (2008). N‑gram‑based approach to composer recognition. Archives of Acoustics, 33(1), 4355.
  93. Yang, D., and Tsai, T. (2021). Composer classification with cross‑modal transfer learning and musically‑informed augmentation. In J. H. Lee, A. Lerch, Z. Duan, J. Nam, P. Rao, P. van Kranenburg, and A. Srinivasamurthy (Eds.), Proceedings of the 22nd International Society for Music Information Retrieval Conference (ISMIR) (pp. 802809).
  94. Youngblood, J. E. (1958). Style as information. Journal of Music Theory, 2(1), 2435.
  95. Zhang, H., Karystinaios, E., Dixon, S., Widmer, G., and Cancino‑Chacón, C. E. (2023). Symbolic music representations for classification tasks: A systematic evaluation. In Proceedings of the 24th International Society for Music Information Retrieval Conference (ISMIR), Milan, Italy, pp. 18.
DOI: https://doi.org/10.5334/tismir.240 | Journal eISSN: 2514-3298
Language: English
Submitted on: Nov 22, 2024
Accepted on: Jun 9, 2025
Published on: Jul 28, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Federico Simonetta, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.