Have a personal or library account? Click to login
Cross-Modal Approaches to Beat Tracking: A Case Study on Chopin Mazurkas Cover

Cross-Modal Approaches to Beat Tracking: A Case Study on Chopin Mazurkas

Open Access
|May 2025

References

  1. Böck, S., and Davies, M. E. P. (2020). Deconstruct, analyse, reconstruct: How to improve tempo, beat, and downbeat estimation. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 574582).
  2. Böck, S., Korzeniowski, F., Schlüter, J., Krebs, F., and Widmer, G. (2016a). madmom: A new Python audio and music signal processing library. In Proceedings of the ACM International Conference on Multimedia (ACM‑MM), Amsterdam, The Netherlands (pp. 11741178).
  3. Böck, S., Krebs, F., and Widmer, G. (2016b). Joint beat and downbeat tracking with recurrent neural networks. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), New York City, New York, USA (pp. 255261).
  4. Chang, C., and Su, L. (2024). Beast: Online joint beat and downbeat tracking based on streaming transformer. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 396400).
  5. Cheng, T., and Goto, M. (2023). Transformer‑based beat tracking with low‑resolution encoder and high‑resolution decoder. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 466473).
  6. Chiu, C.‑Y., Müller, M., Davies, M. E. P., Su, A. W.‑Y., and Yang, Y.‑H. (2022). An analysis method for metric‑level switching in beat tracking. IEEE Signal Processing Letters, 29, 21532157.
  7. Chiu, C.‑Y., Müller, M., Davies, M. E. P., Su, A. W.‑Y., and Yang, Y.‑H. (2023). Local periodicity‑based beat tracking for expressive classical piano music. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 31, 28242835.
  8. Chuang, Y.‑C., and Su, L. (2020). Beat and downbeat tracking of symbolic music data using deep recurrent neural networks. In Asia‑Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) (pp. 346352). IEEE.
  9. Davies, M. E. P., Böck, S., and Fuentes, M. (2021). Tempo, beat and downbeat estimation. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR).
  10. Davies, M. E. P., Quintela, N. D., and Plumbley, M. (2009). Evaluation methods for musical audio beat tracking algorithms. In Queen Mary University of London, Centre for Digital Music, Tech. Rep. C4DM‑TR‑09‑06.
  11. Ellis, D. P. (2007). Beat tracking by dynamic programming. Journal of New Music Research, 36(1), 5160.
  12. Foscarin, F., McLeod, A., Rigaux, P., Jacquemard, F., and Sakai, M. (2020). ASAP: A dataset of aligned scores and performances for piano transcription. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 534541).
  13. Foscarin, F., Schlüter, J., and Widmer, G. (2024). Beat this! Accurate beat tracking without DBN postprocessing. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), San Francisco, CA, United States.
  14. Fuentes, M., McFee, B., Crayencour, H. C., Essid, S., and Bello, J. P. (2018). Analysis of common design choices in deep learning systems for downbeat tracking. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 106112).
  15. Fuentes, M., McFee, B., Crayencour, H. C., Essid, S., and Bello, J. P. (2019). A music structure informed downbeat tracking system using skip‑chain conditional random fields and deep learning. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 481485).
  16. Grosche, P., and Müller, M. (2011). Extracting predominant local pulse information from music recordings. IEEE Transactions on Audio, Speech, and Language Processing, 19(6), 16881701.
  17. Grosche, P., Müller, M., and Sapp, C. S. (2010). What makes beat tracking difficult? A case study on Chopin Mazurkas. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 649654).
  18. Hung, Y., Wang, J., Song, X., Lu, W. T., and Won, M. (2022). Modeling beats and downbeats with a time‑frequency transformer. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 401405).
  19. Kong, Q., Li, B., Song, X., Wan, Y., and Wang, Y. (2021). High‑resolution piano transcription with pedals by regressing onset and offset times. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 37073717.
  20. Krebs, F., Böck, S., and Widmer, G. (2015). An efficient state‑space model for joint tempo and meter tracking. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 7278).
  21. Liu, L., Kong, Q., Morfi, V., and Benetos, E. (2022). Performance midi‑to‑score conversion by neural beat tracking. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 395402).
  22. McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., and Nieto, O. (2015). Librosa: Audio and music signal analysis in Python. In Proceedings the Python Science Conference, Austin, Texas, USA (pp. 1825).
  23. Meier, P., Chiu, C.‑Y., and Müller, M. (2024). A real‑time beat tracking system with zero latency and enhanced controllability. Transactions of the International Society for Music Information Retrieval (TISMIR), 7(1), 213227.
  24. Müller, M., and Chiu, C.‑Y. (2024). A basic tutorial on novelty and activation functions for music signal processing. Transactions of the International Society for Music Information Retrieval (TISMIR), 7(1), 179194.
  25. Nunes, L. O., Rocamora, M., Jure, L., and Biscainho, L. W. P. (2015). Beat and downbeat tracking based on rhythmic patterns applied to the uruguayan candombe drumming. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 264270).
  26. Pinto, A. S., Böck, S., Cardoso, J. S., and Davies, M. E. P. (2021). User‑driven fine‑tuning for beat tracking. Electronics, 10(13), 1518.
  27. Sapp, C. S. (2007). Comparative analysis of multiple musical performances. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Vienna, Austria (pp. 497500).
  28. Sapp, C. S. (2008). Hybrid numeric/rank similarity metrics. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Philadelphia, Pennsylvania, USA (pp. 501506).
  29. Schreiber, H., Zalkow, F., and Müller, M. (2020). Modeling and estimating local tempo: A case study on Chopin’s mazurkas. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Montréal, Canada (pp. 773779).
  30. Schwarzhuber, T. (2024). Beat tracking on classical music: Audio vs symbolic representations. Master’s thesis. University Linz. https://epub.jku.at/obvulihs/content/titleinfo/10031600
  31. Shi, Z. (2021). Computational analysis and modeling of expressive timing in Chopin’s Mazurkas. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 650656).
  32. Yamamoto, K. (2021). Human‑in‑the‑loop adaptation for interactive musical beat tracking. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 794801).
  33. Zhao, J., Xia, G., and Wang, Y. (2022). Beat transformer: Demixed beat and downbeat tracking with dilated self‑attention. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 169177).
DOI: https://doi.org/10.5334/tismir.238 | Journal eISSN: 2514-3298
Language: English
Submitted on: Nov 12, 2024
Accepted on: Apr 1, 2025
Published on: May 2, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Ching-Yu Chiu, Lele Liu, Christof Weiß, Meinard Müller, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.