Have a personal or library account? Click to login
Predicting Eurovision Song Contest Results: A Hit Song Science Approach Cover

Predicting Eurovision Song Contest Results: A Hit Song Science Approach

Open Access
|May 2025

References

  1. Antipov, E. A., and Pokryshevskaya, E. B. (2017). Order effects in the results of song contests: Evidence from the Eurovision and the new wave. Judgment and Decision Making, 12(4), 415419.
  2. Arroyo‑Barrigüete, J. L., Fernández, L., & Obregón, A. (2022). Eurovision in the boardroom: What does voting order tell us about decision‑making? In A. Dubin, D. Vuletic, and A. Obregón (Eds.), The Eurovision Song Contest as a Cultural Phenomenon (Vol. 1, pp. 144159). Routledge.
  3. Bischoff, K., Firan, C. S., Georgescu, M., Nejdl, W., and Paiu, R. (2009). Social knowledge‑driven music hit prediction. In R. Huang, Q. Yang, J. Pei, J. Gama, X. Meng, and X. Li (Eds.), Advanced Data Mining and Applications (ADMA) (Vol. 5678, pp. 4354). Springer.
  4. Blangiardo, M., and Baio, G. (2014). Evidence of bias in the Eurovision Song Contest: Modelling the votes using Bayesian hierarchical models. Journal of Applied Statistics, 41(10), 23122322.
  5. Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O., Roma, G., Salamon, J., Zapata, J., and Serra, X. (2013). Essentia: An open‑source library for sound and music analysis. In Proceedings of the 21st ACM International Conference on Multimedia, MM ’13, New York, NY, USA, pp. 855858. ACM.
  6. Burgoyne, J. A., Spijkervet, J., and Baker, D. J. (2023). Measuring the Eurovision Song Contest: A living dataset for real‑world MIR. In Proceedings of the 24th International Society for Music Information Retrieval Conference, Milan, Italy, pp. 817823.
  7. Chen, T., and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, pp. 785794.
  8. Dekker, A. (2007). The Eurovision Song Contest as a ‘friendship’ network. Connections, 27(3), 5358.
  9. Demergis, D. (2019). Predicting Eurovision Song Contest results by interpreting the tweets of Eurovision fans. In Proceedings of the 6th International Conference on Social Networks Analysis, Management and Security (SNAMS), Granada, Spain, pp. 521528.
  10. Gatherer, D. (2007). Voting in Eurovision: Shared tastes or cultural epidemic? Empirical Text & Culture Research, 3, 7283.
  11. Ginsburgh, V., and Moreno‑Ternero, J. D. (2023). The Eurovision Song Contest: Voting rules, biases and rationality. Journal of Cultural Economics, 47(2), 247277.
  12. Haan, M. A., Dijkstra, S. G., and Dijkstra, P. T. (2005). Expert judgment versus public opinion? Evidence from the Eurovision Song Contest. Journal of Cultural Economics, 29(1), 5978.
  13. Herremans, D., and Bergmans, T. (2017). Hit song prediction based on early adopter data and audio features. In Proceedings of the 18th International Society for Music Information Retrieval Conference – Late Breaking Demo, Suzhou, China.
  14. Kumpulainen, I., Praks, E., Korhonen, T., Ni, A., Rissanen, V., and Vankka, J. (2020). Predicting Eurovision Song Contest results using sentiment analysis. In A. Filchenkov, J. Kauttonen, and L. Pivovarova (Eds.), Artificial Intelligence and Natural Language (AINL 2020), Volume 1292 of Communications in Computer and Information Science (pp. 87108). Springer.
  15. Luković, I., Ivančević, V., and Lalić, M. (2019). Detection of region‑specific voting patterns in Eurovision Song Contest. In Proceedings of the 9th International Conference on Information Society and Technology, Belgrade, Serbia, pp. 4752.
  16. Mantzaris, A. V., Rein, S. R., and Hopkins, A. D. (2018). Preference and neglect amongst countries in the Eurovision Song Contest. Journal of Computational Social Science, 1(2), 377390.
  17. Martin‑Gutiérrez, D., Hernández Peñaloza, G., Belmonte‑Hernández, A., and Álvarez Garcıa, F. (2020). A multimodal end‑to‑end deep learning architecture for music popularity prediction. IEEE Access, 8, 3936139374.
  18. Nunes, J. C., Ordanini, A., and Valsesia, F. (2015). The power of repetition: Repetitive lyrics in a song increase processing fluency and drive market success. Journal of Consumer Psychology, 25(2), 187199.
  19. Ochoa, A., Hernández, A., Sánchez, J., Muñoz‑Zavala, A., and Ponce, J. (2008). Determining the ranking of a new participant in Eurovision using cultural algorithms and data mining. In Proceedings of the 18th International Conference on Electronics, Communications and Computers (Conielecomp 2008), Puebla, Mexico, pp. 4752.
  20. Pachet, F., and Roy, P. (2008). Hit Song Science is not yet a science. In Proceedings of the 9th International Society for Music Information Retrieval Conference. Philadelphia, USA, pp. 335360.
  21. Parada‑Cabaleiro, E., Mayerl, M., Brandl, S., Skowron, M., Schedl, M., Lex, E., and Zangerle, E. (2024). Song lyrics have become simpler and more repetitive over the last five decades. Scientific Reports, 14(1), 5531. 10.1038/s41598-024-55742-x.
  22. Raza, A., and Nanath, K. (2020). Predicting a hit song with machine learning: Is there an a priori secret formula? In Proceedings of the 2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA), pp. 111116. Online.
  23. Salganik, M. J., Dodds, P. S., and Watts, D. J. (2006). Experimental study of inequality and unpredictability in an artificial cultural market. Science, 311(5762), 854856.
  24. Seufitelli, D. B., Oliveira, G. P., Silva, M. O., Scofield, C., and Moro, M. M. (2023). Hit Song Science: A comprehensive survey and research directions. Journal of New Music Research, 52(1), 4172.
  25. Silva, M. O., Oliveira, G. P., Seufitelli, D. B., Lacerda, A., and Moro, M. M. (2022). Collaboration as a driving factor for hit song classification. In Proceedings of the Brazilian Symposium on Multimedia and the Web (WebMedia ‘22), Curitiba, Brazil, pp. 6674.
  26. Spijkervet, J. (2020). The Eurovision Dataset. https://zenodo.org/badge/latestdoi/214236225.
  27. Stockemer, D., Blais, A., Kostelka, F., and Chhim, C. (2017). Voting in the Eurovision Song Contest. Politics, 38(4), 428442.
  28. Svete, A., Hostnik, J., and Šubelj, L. (2020). It is not just about the melody: How Europe votes for its favourite songs. Uporabna Informatika, 28(2), 6684.
  29. Yair, G., and Maman, D. (1996). The persistent structure of hegemony in the Eurovision Song Contest. Acta Sociologica, 39(3), 309325.
  30. Zangerle, E., Vötter, M., Huber, R., and Yang, Y.‑H. (2019). Hit song prediction: Leveraging low‑ and high‑level audio features. In Proceedings of the 20th International Society for Music Information Retrieval Conference, Delft, Netherlands, pp. 319326.
  31. Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable‑rate coding. IEEE Transactions on Information Theory, 24(5), 530536.
DOI: https://doi.org/10.5334/tismir.214 | Journal eISSN: 2514-3298
Language: English
Submitted on: Aug 1, 2024
Accepted on: Apr 14, 2025
Published on: May 27, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Katarzyna Adamska, Joshua Reiss, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.