References
- 1Araujo Junior, S. M. (1992). Acoustic labor in the timing of everyday life: A critical contribution to the history of samba in Rio de Janeiro. PhD thesis, University of Illinois, Urbana, USA.
- 2Böck, S., and Davies, M. E. P. (2020). Deconstruct, analyse, reconstruct: How to improve tempo, beat, and downbeat estimation. In Proceedings of the 21st International Society for Music Information Retrieval Conference, pages 574–582, Montreal, Canada.
- 3Böck, S., Korzeniowski, F., Schlüter, J., Krebs, F., and Widmer, G. (2016). madmom: A new Python audio and music signal processing library. In Proceedings of the 24th ACM International Conference on Multimedia, pages 1174–1178, Amsterdam, The Netherlands. DOI: 10.1145/2964284.2973795
- 4Böck, S., Krebs, F., and Widmer, G. (2014). A multi-model approach to beat tracking considering heterogeneous music styles. In Proceedings of the 15th International Society for Music Information Retrieval Conference, pages 603–608, Taipei, Taiwan.
- 5Böck, S., and Schedl, M. (2011). Enhanced beat tracking with context-aware neural networks. In Proceedings of the 14th Conference on Digital Audio Effects, pages 135–139, Paris, France.
- 6Cano, E., Mora-Ángel, F., Gil, G. A. L., Zapata, J. R., Escamilla, A., Alzate, J. F., and Betancur, M. (2021). Sesquialtera in the Colombian bambuco: Perception and estimation of beat and meter – extended version. Transactions of the International Society for Music Information Retrieval, 4(1):248–262. DOI: 10.5334/tismir.118
- 7Davies, M. E. P., Bock, S., and Fuentes, M. (2021). Tempo, beat and downbeat estimation. In Proceedings 22nd International Society for Music Information Retrieval Conference, Online. Available:
https://tempobeatdownbeat.github.io/tutorial/intro.html . - 8Dixon, S. (2007). Evaluation of the audio beat tracking system BeatRoot. Journal of New Music Research, 36(1):39–50. DOI: 10.1080/09298210701653310
- 9Fiocchi, D., Buccoli, M., Zanoni, M., Antonacci, F., and Sarti, A. (2018). Beat tracking using recurrent neural network: A transfer learning approach. In Proceedings of the 26th European Signal Processing Conference, pages 1929–1933, Rome, Italy. DOI: 10.23919/EUSIPCO.2018.8553059
- 10Fuentes, M., Maia, L. S., Rocamora, M., Biscainho, L. W. P., Crayencour, H.-C., Essid, S., and Bello, J. P. (2019). Tracking beats and microtiming in Afro-Latin American music using conditional random fields and deep learning. In Proceedings of the 20th International Society for Music Information Retrieval Conference, pages 251–258, Delft, The Netherlands.
- 11Gonçalves, G., and Costa, O. (2000). The Carioca Groove: The Rio de Janeiro’s Samba Schools Drum Sections. Groove, Rio de Janeiro, Brazil.
- 12Gouyon, F., Klapuri, A., Dixon, S., Alonso, M., Tzanetakis, G., Uhle, C., and Cano, P. (2006). An experimental comparison of audio tempo induction algorithms. IEEE Transactions on Audio, Speech, and Language Processing, 14(5):1832–1844. DOI: 10.1109/TSA.2005.858509
- 13Hainsworth, S. W., and Macleod, M. D. (2004). Particle filtering applied to musical tempo tracking. EURASIP Journal on Advances in Signal Processing, 15:2385–2395. DOI: 10.1155/S1110865704408099
- 14Heydari, M., Cwitkowitz, F., and Duan, Z. (2021). BeatNet: CRNN and particle filtering for online joint beat downbeat and meter tracking. In Proceedings of the 22nd International Society for Music Information Retrieval Conference, pages 270–277, Online.
- 15Holzapfel, A., Davies, M. E. P., Zapata, J. R., Oliveira, J. L., and Gouyon, F. (2012). Selective sampling for beat tracking evaluation. IEEE Transactions on Audio, Speech, and Language Processing, 20(9):2539–2548. DOI: 10.1109/TASL.2012.2205244
- 16Holzapfel, A., Flexer, A., and Widmer, G. (2011). Improving tempo-sensitive and tempo-robust descriptors for rhythmic similarity. In Proceedings of the 8th Sound and Music Computing Conference, pages 247–252, Padua, Italy.
- 17Holzapfel, A., and Stylianou, Y. (2009). A scale transform based method for rhythmic similarity of music. In Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 317–320, Taipei, Taiwan. DOI: 10.1109/ICASSP.2009.4959584
- 18Holzapfel, A., and Stylianou, Y. (2011). Scale transform in rhythmic similarity of music. IEEE Transactions on Audio, Speech, and Language Processing, 19(1):176–185. DOI: 10.1109/TASL.2010.2045782
- 19Jia, B., Lv, J., and Liu, D. (2019). Deep learning-based automatic downbeat tracking: A brief review. Multimedia Systems, 25(6):617–638. DOI: 10.1007/s00530-019-00607-x
- 20Kim, B., and Pardo, B. (2018). A human-in-the-loop system for sound event detection and annotation. ACM Transactions on Interactive Intelligent Systems, 8(2):1–23. DOI: 10.1145/3214366
- 21Koch, G., Zemel, R., and Salakhutdinov, R. (2015). Siamese neural networks for one-shot image recognition. In 32nd International Conference on Machine Learning Deep Learning Workshop, Lille, France.
- 22Krebs, F., Böck, S., and Widmer, G. (2013). Rhythmic pattern modeling for beat and downbeat tracking in musical audio. In Proceedings of the 14th International Society for Music Information Retrieval Conference, pages 227–232, Curitiba, Brazil.
- 23Lidy, T., and Rauber, A. (2005). Evaluation of feature extractors and psycho-acoustic transformations for music genre classification. In Proceedings of the 6th International Conference on Music Information Retrieval, pages 34–41, London, United Kingdom.
- 24Lin, H., and Bilmes, J. A. (2009). How to select a good training-data subset for transcription: Submodular active selection for sequences. In Proceedings of the 10th Annual Conference of the International Speech Communication Association, pages 2859–2862, Brighton, United Kingdom. DOI: 10.21437/Interspeech.2009-730
- 25Maia, L. S., Rocamora, M., Biscainho, L. W. P., and Fuentes, M. (2022). Adapting meter tracking models to Latin American music. In Proceedings of the 23rd International Society for Music Information Retrieval Conference, pages 361–368, Bengaluru, India.
- 26Maia, L. S., Tomaz, P. D.
Jr. , Fuentes, M., Rocamora, M., Biscainho, L. W. P., Costa, M. V. M., and Cohen, S. (2018). A novel dataset of Brazilian rhythmic instruments and some experiments in computational rhythm analysis. In Proceedings of the 2018 AES Latin American Congress of Audio Engineering, pages 53–60, Montevideo, Uruguay. - 27McInnes, L., Healy, J., and Melville, J. (2020). UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv preprint, arXiv:1802.03426v3.
- 28McInnes, L., Healy, J., Saul, N., and Großberger, L. (2018). UMAP: Uniform manifold approximation and projection. The Journal of Open Source Software, 3(29):861. DOI: 10.21105/joss.00861
- 29Misgeld, O., Gulz, T., Miniotaitė, J., and Holzapfel, A. (2021). A case study of deep enculturation and sensorimotor synchronization to real music. In Proceedings of the 22nd International Society for Music Information Retrieval Conference, pages 460–467, Online.
- 30Nunes, L., Rocamora, M., Jure, L., and Biscainho, L. W. P. (2015). Beat and downbeat tracking based on rhythmic patterns applied to the Uruguayan Candombe drumming. In Proceedings of the 16th International Society for Music Information Retrieval Conference, pages 264–270, Málaga, Spain.
- 31Panteli, M., and Dixon, S. (2016). On the evaluation of rhythmic and melodic descriptors for music similarity. In Proceedings of the 17th International Society for Music Information Retrieval Conference, pages 468–474, New York, USA.
- 32Pinto, A. S., Böck, S., Cardoso, J. S., and Davies, M. E. P. (2021). User-driven fine-tuning for beat tracking. Electronics, 10(13):1518. DOI: 10.3390/electronics10131518
- 33Pinto, A. S., and Davies, M. E. P. (2021).
Tapping along to the difficult ones: Leveraging user-input for beat tracking in highly expressive musical content . Kronland-Martinet, R., Ystad, S., and Aramaki, M., editors, Perception, Representations, Image, Sound, Music. CMMR 2019, volume 12631 of Lecture Notes in Computer Science, pages 75–90. Springer, Cham, Switzerland. DOI: 10.1007/978-3-030-70210-6_5 - 34Pohle, T., Schnitzer, D., Schedl, M., Knees, P., and Widmer, G. (2009). On rhythm and general music similarity. In Proceedings of the 10th International Society for Music Information Retrieval Conference, pages 525–530, Kobe, Japan.
- 35Rocamora, M. (2018). Computational Methods for Percussion Music Analysis: The Afro-Uruguayan Candombe Drumming as a Case Study. PhD thesis, Universidad de la República, Montevideo, Uruguay.
- 36Rocamora, M., Jure, L., Marenco, B., Fuentes, M., Lanzaro, F., and Gómez, A. (2015). An audio-visual database of Candombe performances for computational musicological studies. In Memorias del II Congreso Internacional de Ciencia y Tecnología Musical, pages 17–24, Buenos Aires, Argentina.
- 37Sarasúa, Á., Laurier, C., and Herrera, P. (2012). Support vector machine active learning for music mood tagging. In Proceedings of the 9th International Symposium on Computer Music Modelling and Retrieval, pages 518–525, London, UK.
- 38Settles, B. (2009).
Active learning literature survey . Computer Sciences Technical Report 1648, University of Wisconsin–Madison, Madison, USA. - 39Seyerlehner, K., Widmer, G., and Pohle, T. (2010). Fusing block-level features for music similarity estimation. In Proceedings of the 13th Conference on Digital Audio Effects, pages 225–232, Graz, Austria.
- 40Shuyang, Z., Heittola, T., and Virtanen, T. (2017). Active learning for sound event classification by clustering unlabeled data. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 751–755, New Orleans, USA. DOI: 10.1109/ICASSP.2017.7952256
- 41Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical networks for few-shot learning. In Advances in Neural Information Processing Systems, volume 30, pages 4077–4087.
- 42Su, H., Kasai, J., Wu, C. H., Shi, W., Wang, T., Xin, J., Zhang, R., Ostendorf, M., Zettlemoyer, L., Smith, N. A., and Yu, T. (2023). Selective annotation makes language models better few-shot learners. In Proceedings of the 11th International Conference on Learning Representations, Kigali, Rwanda.
- 43Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., and Wierstra, D. (2016). Matching networks for one shot learning. In Advances in Neural Information Processing Systems, volume 29, pages 3630–3638.
- 44Wang, Y., Cartwright, M., and Bello, J. P. (2022a). Active few-shot learning for sound event detection. In Proceedings of the 23rd Annual Conference of the International Speech Communication Association, pages 1551–1555, Incheon, Korea. DOI: 10.21437/Interspeech.2022-10907
- 45Wang, Y., Salamon, J., Cartwright, M., Bryan, N. J., and Bello, J. P. (2020). Few-shot drum transcription in polyphonic music. In Proceedings of the 21st International Society for Music Information Retrieval Conference, pages 117–124, Montreal, Canada.
- 46Wang, Y., Stoller, D., Bittner, R. M., and Bello, J. P. (2022b). Few-shot musical source separation. In Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 121–125, Singapore. DOI: 10.1109/ICASSP43922.2022.9747536
- 47Williams, W. J., and Zalubas, E. J. (2000). Helicopter transmission fault detection via time-frequency, scale and spectral methods. Mechanical Systems and Signal Processing, 14(4):545–559. DOI: 10.1006/mssp.2000.1296
- 48Yamamoto, K. (2021). Human-in-the-loop adaptation for interactive musical beat tracking. In Proceedings of the 22nd International Society for Music Information Retrieval Conference, pages 794–801, Online.
