Have a personal or library account? Click to login
Selective Annotation of Few Data for Beat Tracking of Latin American Music Using Rhythmic Features Cover

Selective Annotation of Few Data for Beat Tracking of Latin American Music Using Rhythmic Features

Open Access
|May 2024

Figures & Tables

tismir-7-1-170-g1.png
Figure 1

Construction of a set of annotated samples.

tismir-7-1-170-g2.png
Figure 2

Global tempo distributions.

tismir-7-1-170-g3.png
Figure 3

STM features embedded by UMAP (cosine metric, n-neighbors = 15, min-dist = 0.1).

Table 1

Performances of the state of the art (without data selection): mean (standard deviation) in %.

BEAT F-MEASURE (%)
MODELBRIDCANDOMBE
Pre-trained (Maia et al., 2022)60.015.9
Fine-tuned (3 min)93.4 (3.4)98.2 (1.1)
Trained from scratch (all)98.9 (1.2)99.8 (0.3)
tismir-7-1-170-g4.png
Figure 4

Results for Experiment 1. Random data selections on the BRID dataset ordered by mean F-measure, showing standard deviations (shaded area).

tismir-7-1-170-g5.png
Figure 5

Example of pairwise feature distance frequencies and regions surrounding a single test sample (star) from a normal data distribution. The distance distribution (top) defines quartile regions in the feature domain (bottom).

tismir-7-1-170-g6.png
Figure 6

Results for Experiment 2. Average beat F-measure gains (95% confidence interval) w.r.t. sampling from 4.

Table 2

Results for Experiment 3: mean value (standard deviation) in %. In boldface, the best-performing selective sampling technique given M (budget) and feature, for each dataset; in gray, the best-performing setup in each dataset–budget pair. Sampling techniques: diversity (DIV), k-medoids (MED), maximum facility location (MFL), vote-k (VTK), random (RND).

BEAT F-MEASURE (%)
ONSET PATTERNS (OP)SCALE TRANSFORM MAGNITUDES (STM)RND
DATASETMDIVMEDMFLVTKDIVMEDMFLVTK
Ballroom1069.5 (2.3)77.2 (2.0)76.7 (2.5)74.8 (3.0)66.0 (2.9)77.4 (2.0)75.5 (1.9)75.2 (1.8)72.5 (4.5)
1672.3 (2.7)81.1 (1.1)78.4 (2.3)77.9 (3.6)76.7 (1.9)80.4 (1.1)82.1 (1.1)78.8 (0.9)76.9 (3.2)
2274.1 (1.5)82.2 (1.1)82.0 (1.2)79.7 (1.0)79.8 (2.3)84.1 (0.7)85.4 (0.6)81.3 (1.4)81.1 (2.8)
2879.0 (1.5)83.8 (0.7)83.0 (1.2)81.0 (0.9)77.8 (2.4)84.7 (0.8)85.9 (0.5)83.2 (0.8)83.5 (1.5)
3479.8 (1.0)85.6 (0.8)84.3 (0.9)83.0 (1.2)78.1 (2.0)85.7 (0.8)85.8 (0.6)85.3 (0.8)84.6 (1.4)
4081.1 (1.4)85.2 (0.9)84.9 (1.0)83.5 (0.9)79.3 (1.8)84.8 (1.0)85.2 (1.3)85.2 (0.5)85.2 (1.4)
BRID483.9 (4.4)91.0 (2.2)88.7 (3.8)81.8 (3.3)66.7 (8.2)86.0 (2.7)76.3 (9.5)75.0 (4.1)72.7 (8.4)
675.9 (5.3)90.9 (2.8)89.2 (4.2)86.7 (1.7)72.5 (4.9)88.2 (5.7)82.9 (3.4)84.2 (4.6)76.3 (8.3)
881.4 (5.0)89.9 (3.8)89.6 (3.0)90.6 (2.1)87.4 (3.1)82.8 (4.3)89.4 (2.4)91.2 (1.9)78.2 (8.4)
1084.3 (4.6)93.7 (1.9)94.9 (1.4)89.1 (1.2)79.6 (3.7)91.3 (2.5)89.2 (2.6)94.3 (1.7)82.7 (8.7)
1290.5 (1.7)93.3 (1.7)94.0 (6.0)91.0 (1.7)80.7 (4.7)89.6 (4.8)90.7 (2.6)94.1 (1.5)85.5 (6.9)
1487.9 (2.3)92.7 (2.0)94.1 (1.9)91.2 (1.4)80.7 (3.3)91.4 (3.2)91.5 (2.2)95.8 (1.1)89.3 (4.7)
Candombe481.2 (7.4)91.6 (2.5)82.8 (3.7)90.3 (2.5)89.5 (2.8)90.5 (4.5)94.9 (0.8)93.7 (1.1)94.0 (3.7)
683.7 (13.7)95.2 (2.6)91.7 (1.7)93.2 (1.8)90.3 (2.4)96.4 (0.6)95.1 (0.7)95.7 (1.0)95.0 (1.8)
897.0 (1.3)96.1 (1.7)92.5 (1.9)92.5 (1.0)94.6 (2.6)96.0 (0.7)95.2 (0.8)96.0 (0.7)95.2 (1.5)
1098.2 (1.2)96.5 (1.2)94.4 (1.5)93.0 (0.7)96.8 (0.7)96.2 (0.6)96.3 (0.5)96.0 (0.8)95.9 (1.7)
1299.0 (0.3)95.4 (2.6)96.8 (1.0)93.8 (0.9)98.2 (0.7)96.1 (0.6)96.3 (0.6)96.1 (0.6)96.5 (1.5)
1499.2 (0.2)98.8 (0.1)97.1 (1.0)93.8 (0.5)98.4 (0.4)96.1 (0.6)96.2 (0.5)96.1 (0.5)96.8 (1.5)
DOI: https://doi.org/10.5334/tismir.170 | Journal eISSN: 2514-3298
Language: English
Submitted on: Aug 11, 2023
Accepted on: Mar 30, 2024
Published on: May 14, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Lucas S. Maia, Martín Rocamora, Luiz W. P. Biscainho, Magdalena Fuentes, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.