Have a personal or library account? Click to login
Depict or Discern? Fingerprinting Musical Taste from Explicit Preferences Cover

Depict or Discern? Fingerprinting Musical Taste from Explicit Preferences

Open Access
|Jan 2024

References

  1. 1Bogdanov, D., Haro, M., Fuhrmann, F., Xambo, A., Gomez, E., and Herrera, P. (2013). Semantic audio content-based music recommendation and visualization based on user preference examples. Information Processing & Management, 49(1): 1333. DOI: 10.1016/j.ipm.2012.06.004
  2. 2Bourdieu, P. (1984). Distinction – A Social Critique of the Judgement of Taste. Harvard University Press.
  3. 3Brown, R. A. (2012). Music preferences and personality among Japanese university students. International Journal of Psychology, 47(4): 259268. DOI: 10.1080/00207594.2011.631544
  4. 4Bryson, B. (1996). “Anything but heavy metal”: Symbolic exclusion and musical dislikes. American Sociological Review, pages 884899. DOI: 10.2307/2096459
  5. 5Cano, P., Koppenberger, M., and Wack, N. (2005). Content-based music audio recommendation. In Proceedings of the 13th Annual ACM International Conference on Multimedia, pages 211212. DOI: 10.1145/1101149.1101181
  6. 6Cormode, G., Srivastava, D., Yu, T., and Zhang, Q. (2008). Anonymizing bipartite graph data using safe groupings. In 34th International Conference on Very Large Data Bases, pages 833844. DOI: 10.14778/1453856.1453947
  7. 7Coulangeon, P. (2017). Cultural openness as an emerging form of cultural capital in contemporary France. Cultural Sociology, 11(2): 145164. DOI: 10.1177/1749975516680518
  8. 8Cura, R., Beaumont, A., Beuscart, J.-S., Coavoux, S., de Fozieres, N. L., Bigot, B. L., Renisio, Y., Moussallam, M., and Louail, T. (2022). Uplifting interviews in social science with individual data visualization: The case of music listening. In CHI Conference on Human Factors in Computing Systems Extended Abstracts, pages 19. DOI: 10.1145/3491101.3503553
  9. 9De Montjoye, Y.-A., Hidalgo, C. A., Verleysen, M., and Blondel, V. D. (2013). Unique in the crowd: The privacy bounds of human mobility. Scientific Reports, 3(1): 15. DOI: 10.1038/srep01376
  10. 10Delbouys, R., Hennequin, R., Piccoli, F., Royo-Letelier, J., and Moussallam, M. (2018). Music mood detection based on audio and lyrics with deep neural net. arXiv preprint arXiv:1809.07276.
  11. 11Delsing, M. J., Ter Bogt, T. F., Engels, R. C., and Meeus, W. H. (2008). Adolescents’ music preferences and personality characteristics. European Journal of Personality, 22(2): 109130. DOI: 10.1002/per.665
  12. 12DeNora, T. (2000). Music in Everyday Life. Cambridge University Press. DOI: 10.1017/CBO9780511489433
  13. 13Eck, D., Lamere, P., Bertin-Mahieux, T., and Green, S. (2007). Automatic generation of social tags for music recommendation. Advances in Neural Information Processing Systems, 20.
  14. 14Ferwerda, B. and Schedl, M. (2014). Enhancing music recommender systems with personality information and emotional states: A proposal. In Posters, Demos, Late-Breaking Results and Workshop Proceedings of the 22nd Conference on User Modeling, Adaptation, and Personalization.
  15. 15Flegal, K. M., Ogden, C. L., Fryar, C., Afful, J., Klein, R., and Huang, D. T. (2019). Comparisons of self-reported and measured height and weight, BMI, and obesity prevalence from national surveys: 1999–2016. Obesity, 27(10): 17111719. DOI: 10.1002/oby.22591
  16. 16Fromkin, H. L. and Snyder, C. R. (1980). The search for uniqueness and valuation of scarcity. In Social Exchange, pages 5775. Springer. DOI: 10.1007/978-1-4613-3087-5_3
  17. 17George, D., Stickle, K., Rachid, F., and Wopnford, A. (2007). The association between types of music enjoyed and cognitive, behavioral, and personality factors of those who listen. Psychomusicology: A Journal of Research in Music Cognition, 19(2): 32. DOI: 10.1037/h0094035
  18. 18Hargreaves, D. J., North, A. C., and Tarrant, M. (2006). Musical preference and taste in childhood and adolescence. Oxford University Press. DOI: 10.1093/acprof:oso/9780198530329.003.0007
  19. 19Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8): 3037. DOI: 10.1109/MC.2009.263
  20. 20Lahire, B. (2008). The individual and the mixing of genres: Cultural dissonance and self-distinction. Poetics, 36(2–3): 166188. DOI: 10.1016/j.poetic.2008.02.001
  21. 21Langmeyer, A., Guglhor-Rudan, A., and Tarnai, C. (2012). What do music preferences reveal about personality? A cross-cultural replication using selfratings and ratings of music samples. Journal of Individual Differences, 33(2): 119. DOI: 10.1027/1614-0001/a000082
  22. 22Laplante, A. (2014). Improving music recommender systems: What can we learn from research on music tastes. In Proceedings of the International Society for Music Information Retrieval Conference, pages 451456.
  23. 23Liang, D., Krishnan, R. G., Hoffman, M. D., and Jebara, T. (2018). Variational autoencoders for collaborative filtering. In Proceedings of the World Wide Web Conference, pages 689698. DOI: 10.1145/3178876.3186150
  24. 24Majumdar, A., Kumar, A., and Manohar, S. (2009). Music recommendations based on implicit feedback and social circles: The Last FM data set. https://cseweb.ucsd.edu/classes/wi15/cse255-a/reports/fa15/007.pdf.
  25. 25Narayanan, A. and Shmatikov, V. (2008). Robust deanonymization of large sparse datasets. In IEEE Symposium on Security and Privacy, pages 111125. DOI: 10.1109/SP.2008.33
  26. 26North, A. C. (2010). Individual differences in musical taste. The American Journal of Psychology, 123(2): 199208. DOI: 10.5406/amerjpsyc.123.2.0199
  27. 27Oard, D. W. and Kim, J. (1998). Implicit feedback for recommender systems. In Proceedings of the AAAI Workshop on Recommender Systems, volume 83, pages 8183. Madison, WI.
  28. 28Pazzani, M. J. and Billsus, D. (2007). Contentbased recommendation systems. In Brusilovsky, P., Kobsa, A., and Nejdl, W., editors, The Adaptive Web, pages 325341. Springer. DOI: 10.1007/978-3-540-72079-9_10
  29. 29Peterson, R. A. (1992). Understanding audience segmentation: From elite and mass to omnivore and univore. Poetics, 21(4): 243258. DOI: 10.1016/0304-422X(92)90008-Q
  30. 30Rentfrow, P. J. and Gosling, S. D. (2003). The do re mi’s of everyday life: The structure and personality correlates of music preferences. Journal of Personality and Social Psychology, 84(6): 1236. DOI: 10.1037/0022-3514.84.6.1236
  31. 31Schedl, M., Knees, P., McFee, B., Bogdanov, D., and Kaminskas, M. (2015). Music recommender systems. In Recommender Systems Handbook, pages 453492. Springer. DOI: 10.1007/978-1-4899-7637-6_13
  32. 32Soleymani, M., Aljanaki, A., Wiering, F., and Veltkamp, R. C. (2015). Content-based music recommendation using underlying music preference structure. In IEEE International Conference on Multimedia and Expo (ICME), pages 16. DOI: 10.1109/ICME.2015.7177504
  33. 33Sordo, M., Celma, O., Blech, M., and Guaus, E. (2008). The quest for musical genres: Do the experts and the wisdom of crowds agree. In Proceedings of the International Conference on Music Information Retrieval, pages 255260.
  34. 34Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05): 557570. DOI: 10.1142/S0218488502001648
  35. 35Uitdenbogerd, A. and Schyndel, R. (2002). A review of factors affecting music recommender success. In Proceedings of the 3rd International Conference on Music Information Retrieval, pages 204208.
  36. 36Van den Oord, A., Dieleman, S., and Schrauwen, B. (2013). Deep content-based music recommendation. Advances in Neural Information Processing Systems, 26.
  37. 37Vargas, S. and Castells, P. (2013). Exploiting the diversity of user preferences for recommendation. In Proceedings of the 10th Conference on Open Research Areas in Information Retrieval, pages 129136.
  38. 38Way, S. F., Gil, S., Anderson, I., and Clauset, A. (2019). Environmental changes and the dynamics of musical identity. In Proceedings of the International AAAI Conference on Web and Social Media, volume 13, pages 527536. DOI: 10.1609/icwsm.v13i01.3250
DOI: https://doi.org/10.5334/tismir.158 | Journal eISSN: 2514-3298
Language: English
Submitted on: Dec 23, 2022
Accepted on: Nov 20, 2023
Published on: Jan 22, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Kristina Matrosova, Manuel Moussallam, Thomas Louail, Olivier Bodini, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.