References
- 1Bogdanov, D., Haro, M., Fuhrmann, F., Xambo, A., Gomez, E., and Herrera, P. (2013). Semantic audio content-based music recommendation and visualization based on user preference examples. Information Processing & Management, 49(1): 13–33. DOI: 10.1016/j.ipm.2012.06.004
- 2Bourdieu, P. (1984). Distinction – A Social Critique of the Judgement of Taste. Harvard University Press.
- 3Brown, R. A. (2012). Music preferences and personality among Japanese university students. International Journal of Psychology, 47(4): 259–268. DOI: 10.1080/00207594.2011.631544
- 4Bryson, B. (1996). “Anything but heavy metal”: Symbolic exclusion and musical dislikes. American Sociological Review, pages 884–899. DOI: 10.2307/2096459
- 5Cano, P., Koppenberger, M., and Wack, N. (2005). Content-based music audio recommendation. In Proceedings of the 13th Annual ACM International Conference on Multimedia, pages 211–212. DOI: 10.1145/1101149.1101181
- 6Cormode, G., Srivastava, D., Yu, T., and Zhang, Q. (2008). Anonymizing bipartite graph data using safe groupings. In 34th International Conference on Very Large Data Bases, pages 833–844. DOI: 10.14778/1453856.1453947
- 7Coulangeon, P. (2017). Cultural openness as an emerging form of cultural capital in contemporary France. Cultural Sociology, 11(2): 145–164. DOI: 10.1177/1749975516680518
- 8Cura, R., Beaumont, A., Beuscart, J.-S., Coavoux, S., de Fozieres, N. L., Bigot, B. L., Renisio, Y., Moussallam, M., and Louail, T. (2022). Uplifting interviews in social science with individual data visualization: The case of music listening. In CHI Conference on Human Factors in Computing Systems Extended Abstracts, pages 1–9. DOI: 10.1145/3491101.3503553
- 9De Montjoye, Y.-A., Hidalgo, C. A., Verleysen, M., and Blondel, V. D. (2013). Unique in the crowd: The privacy bounds of human mobility. Scientific Reports, 3(1): 1–5. DOI: 10.1038/srep01376
- 10Delbouys, R., Hennequin, R., Piccoli, F., Royo-Letelier, J., and Moussallam, M. (2018). Music mood detection based on audio and lyrics with deep neural net. arXiv preprint arXiv:1809.07276.
- 11Delsing, M. J., Ter Bogt, T. F., Engels, R. C., and Meeus, W. H. (2008). Adolescents’ music preferences and personality characteristics. European Journal of Personality, 22(2): 109–130. DOI: 10.1002/per.665
- 12DeNora, T. (2000). Music in Everyday Life. Cambridge University Press. DOI: 10.1017/CBO9780511489433
- 13Eck, D., Lamere, P., Bertin-Mahieux, T., and Green, S. (2007). Automatic generation of social tags for music recommendation. Advances in Neural Information Processing Systems, 20.
- 14Ferwerda, B. and Schedl, M. (2014). Enhancing music recommender systems with personality information and emotional states: A proposal. In Posters, Demos, Late-Breaking Results and Workshop Proceedings of the 22nd Conference on User Modeling, Adaptation, and Personalization.
- 15Flegal, K. M., Ogden, C. L., Fryar, C., Afful, J., Klein, R., and Huang, D. T. (2019). Comparisons of self-reported and measured height and weight, BMI, and obesity prevalence from national surveys: 1999–2016. Obesity, 27(10): 1711–1719. DOI: 10.1002/oby.22591
- 16Fromkin, H. L. and Snyder, C. R. (1980).
The search for uniqueness and valuation of scarcity . In Social Exchange, pages 57–75. Springer. DOI: 10.1007/978-1-4613-3087-5_3 - 17George, D., Stickle, K., Rachid, F., and Wopnford, A. (2007). The association between types of music enjoyed and cognitive, behavioral, and personality factors of those who listen. Psychomusicology: A Journal of Research in Music Cognition, 19(2): 32. DOI: 10.1037/h0094035
- 18Hargreaves, D. J., North, A. C., and Tarrant, M. (2006). Musical preference and taste in childhood and adolescence. Oxford University Press. DOI: 10.1093/acprof:oso/9780198530329.003.0007
- 19Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8): 30–37. DOI: 10.1109/MC.2009.263
- 20Lahire, B. (2008). The individual and the mixing of genres: Cultural dissonance and self-distinction. Poetics, 36(2–3): 166–188. DOI: 10.1016/j.poetic.2008.02.001
- 21Langmeyer, A., Guglhor-Rudan, A., and Tarnai, C. (2012). What do music preferences reveal about personality? A cross-cultural replication using selfratings and ratings of music samples. Journal of Individual Differences, 33(2): 119. DOI: 10.1027/1614-0001/a000082
- 22Laplante, A. (2014). Improving music recommender systems: What can we learn from research on music tastes. In Proceedings of the International Society for Music Information Retrieval Conference, pages 451–456.
- 23Liang, D., Krishnan, R. G., Hoffman, M. D., and Jebara, T. (2018). Variational autoencoders for collaborative filtering. In Proceedings of the World Wide Web Conference, pages 689–698. DOI: 10.1145/3178876.3186150
- 24Majumdar, A., Kumar, A., and Manohar, S. (2009). Music recommendations based on implicit feedback and social circles: The Last FM data set.
https://cseweb.ucsd.edu/classes/wi15/cse255-a/reports/fa15/007.pdf . - 25Narayanan, A. and Shmatikov, V. (2008). Robust deanonymization of large sparse datasets. In IEEE Symposium on Security and Privacy, pages 111–125. DOI: 10.1109/SP.2008.33
- 26North, A. C. (2010). Individual differences in musical taste. The American Journal of Psychology, 123(2): 199–208. DOI: 10.5406/amerjpsyc.123.2.0199
- 27Oard, D. W. and Kim, J. (1998).
Implicit feedback for recommender systems . In Proceedings of the AAAI Workshop on Recommender Systems, volume 83, pages 81–83. Madison, WI. - 28Pazzani, M. J. and Billsus, D. (2007).
Contentbased recommendation systems . In Brusilovsky, P., Kobsa, A., and Nejdl, W., editors, The Adaptive Web, pages 325–341. Springer. DOI: 10.1007/978-3-540-72079-9_10 - 29Peterson, R. A. (1992). Understanding audience segmentation: From elite and mass to omnivore and univore. Poetics, 21(4): 243–258. DOI: 10.1016/0304-422X(92)90008-Q
- 30Rentfrow, P. J. and Gosling, S. D. (2003). The do re mi’s of everyday life: The structure and personality correlates of music preferences. Journal of Personality and Social Psychology, 84(6): 1236. DOI: 10.1037/0022-3514.84.6.1236
- 31Schedl, M., Knees, P., McFee, B., Bogdanov, D., and Kaminskas, M. (2015).
Music recommender systems . In Recommender Systems Handbook, pages 453–492. Springer. DOI: 10.1007/978-1-4899-7637-6_13 - 32Soleymani, M., Aljanaki, A., Wiering, F., and Veltkamp, R. C. (2015). Content-based music recommendation using underlying music preference structure. In IEEE International Conference on Multimedia and Expo (ICME), pages 1–6. DOI: 10.1109/ICME.2015.7177504
- 33Sordo, M., Celma, O., Blech, M., and Guaus, E. (2008). The quest for musical genres: Do the experts and the wisdom of crowds agree. In Proceedings of the International Conference on Music Information Retrieval, pages 255–260.
- 34Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05): 557–570. DOI: 10.1142/S0218488502001648
- 35Uitdenbogerd, A. and Schyndel, R. (2002). A review of factors affecting music recommender success. In Proceedings of the 3rd International Conference on Music Information Retrieval, pages 204–208.
- 36Van den Oord, A., Dieleman, S., and Schrauwen, B. (2013). Deep content-based music recommendation. Advances in Neural Information Processing Systems, 26.
- 37Vargas, S. and Castells, P. (2013). Exploiting the diversity of user preferences for recommendation. In Proceedings of the 10th Conference on Open Research Areas in Information Retrieval, pages 129–136.
- 38Way, S. F., Gil, S., Anderson, I., and Clauset, A. (2019). Environmental changes and the dynamics of musical identity. In Proceedings of the International AAAI Conference on Web and Social Media, volume 13, pages 527–536. DOI: 10.1609/icwsm.v13i01.3250
