Have a personal or library account? Click to login
Four-way Classification of Tabla Strokes with Transfer Learning Using Western Drums Cover

Four-way Classification of Tabla Strokes with Transfer Learning Using Western Drums

Open Access
|Sep 2023

References

  1. 1Bello, J. P., Daudet, L., Abdallah, S., Duxbury, C., Davies, M., and Sandler, M. B. (2005). A tutorial on onset detection in music signals. IEEE Transactions on Speech and Audio Processing, 13(5):10351047. DOI: 10.1109/TSA.2005.851998
  2. 2Bonada, J., Serra, X., Amatriain, X., and Loscos, A. (2011). Spectral processing. In Zolzer, U., editor, DAFX: Digital Audio Effects, chapter 10, pages 393445. John Wiley & Sons, Ltd. DOI: 10.1002/9781119991298.ch10
  3. 3Brossier, P., Bello, J. P., and Plumbley, M. D. (2004). Fast labelling of notes in music signals. In Proceedings of the 5th International Conference on Music Information Retrieval, Barcelona, Spain.
  4. 4Choi, K., Fazekas, G., Sandler, M., and Cho, K. (2017). Transfer learning for music classification and regression tasks. In Proceedings of the 18th International Society for Music Information Retrieval Conference, Suzhou, China.
  5. 5Chordia, P. (2005). Segmentation and recognition of tabla strokes. In Proceedings of the 6th International Conference on Music Information Retrieval, London, U.K.
  6. 6Chordia, P. and Rae, A. (2008). Tabla Gyan: A system for realtime tabla recognition and resynthesis. In Proceedings of the 34th International Computer Music Conference, Belfast, Ireland. Michigan Publishing.
  7. 7Clayton, M. (2001). Time in Indian Music: Rhythm, Metre, and Form in North Indian Rag Performance. Oxford University Press, U.K.
  8. 8Clayton, M. (2020). Theory and practice of longform non-isochronous metres. Music Theory Online, 26(1). DOI: 10.30535/mto.26.1.2
  9. 9Courtney, D. (2013). Fundamentals of Tabla. Sur Sangeet Services.
  10. 10Dittmar, C. and Gartner, D. (2014). Real-time transcription and separation of drum recordings based on NMF decomposition. In Proceedings of the 17th International Conference on Digital Audio Effects, Erlangen, Germany.
  11. 11Gillet, O. and Richard, G. (2003). Automatic labelling of tabla signals. In Proceedings of the 4th International Conference on Music Information Retrieval, Baltimore, USA.
  12. 12Gillet, O. and Richard, G. (2006). ENST-Drums: An extensive audio-visual database for drum signals processing. In Proceedings of the 7th International Conference on Music Information Retrieval, Victoria, Canada.
  13. 13Guo, Y., Shi, H., Kumar, A., Grauman, K., Rosing, T., and Feris, R. (2019). Spottune: Transfer learning through adaptive fine-tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA. DOI: 10.1109/CVPR.2019.00494
  14. 14Gupta, S., Srinivasamurthy, A., Kumar, M., Murthy, H. A., and Serra, X. (2015). Discovery of syllabic percussion patterns in tabla solo recordings. In Proceedings of the 16th International Society for Music Information Retrieval Conference, Malaga, Spain.
  15. 15Jacques, C. and Robel, A. (2018). Automatic drum transcription with convolutional neural networks. In Proceedings of the 21st International Conference on Digital Audio Effects, Aveiro, Portugal.
  16. 16Jacques, C. and Robel, A. (2019). Data augmentation for drum transcription with convolutional neural networks. In Proceedings of the 27th IEEE European Signal Processing Conference, A Coruna, Spain. DOI: 10.23919/EUSIPCO.2019.8902980
  17. 17Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of 3rd International Conference on Learning Representations, ICLR, San Diego, USA.
  18. 18Narang, K. and Rao, P. (2017). Acoustic features for determining goodness of tabla strokes. In Proceedings of the 18th International Society for Music Information Retrieval Conference, Suzhou, China.
  19. 19Rohit, M. A., Bhattacharjee, A., and Rao, P. (2021). Four-way classification of tabla strokes with models adapted from automatic drum transcription. In Proceedings of the 22nd International Society for Music Information Retrieval Conference, Online.
  20. 20Rohit, M. A. and Rao, P. (2018). Acoustic-prosodic features of tabla bol recitation and correspondence with the tabla imitation. In Proceedings of Interspeech, Hyderabad, India.
  21. 21Rohit, M. A. and Rao, P. (2021). Automatic stroke classification of tabla accompaniment in Hindustani vocal concert audio. The Journal of Acoustical Society of India, 48(1–2).
  22. 22Sarkar, R., Singh, A., Mondal, A., and Saha, S. K. (2018). Automatic extraction and identification of bol from tabla signal. In Chaki, R., Cortesi, A., Saeed, K., and Chaki, N., editors, Advanced Computing and Systems for Security: Volume Five, pages 139151. Springer Singapore. DOI: 10.1007/978-981-10-8180-4_9
  23. 23Schlüter, J. and Bock, S. (2014). Improved musical onset detection with convolutional neural networks. In Proceedings of the 39th IEEE International Conference on Acoustics, Speech, and Signal Processing, Florence, Italy. DOI: 10.1109/ICASSP.2014.6854953
  24. 24Schlüter, J. and Grill, T. (2015). Exploring data augmentation for improved singing voice detection with neural networks. In Proceedings of the 16th International Society for Music Information Retrieval Conference, Malaga, Spain.
  25. 25Shete, S. and Deshmukh, S. (2021). North Indian classical music tabla tala (rhythm) prediction system using machine learning. In Biswas, A., Wennekes, E., Hong, T.-P., and Wieczorkowska, A., editors, Advances in Speech and Music Technology. Springer Singapore. DOI: 10.1007/978-981-33-6881-1_16
  26. 26Southall, C., Stables, R., and Hockman, J. (2017a). Automatic drum transcription for polyphonic recordings using soft attention mechanisms and convolutional neural networks. In Proceedings of the 18th International Society for Music Information Retrieval Conference, Suzhou, China.
  27. 27Southall, C., Wu, C.-W., Lerch, A., and Hockman, J. (2017b). MDB Drums: An annotated subset of MedleyDB for automatic drum transcription. In Extended Abstracts for the Late-Breaking Demo Session of the 18th International Society for Music Information Retrieval Conference, Suzhou, China.
  28. 28Srinivasamurthy, A., Holzapfel, A., Ganguli, K. K., and Serra, X. (2017). Aspects of tempo and rhythmic elaboration in Hindustani music: A corpus study. Frontiers in Digital Humanities, 4:20. DOI: 10.3389/fdigh.2017.00020
  29. 29Virtanen, P., Gommers, R., Oliphant, T. E., et al. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17:261272.
  30. 30Vogl, R., Dorfer, M., Widmer, G., and Knees, P. (2017). Drum transcription via joint beat and drum modeling using convolutional recurrent neural networks. In Proceedings of the 18th International Society for Music Information Retrieval Conference, Suzhou, China.
  31. 31Wu, C., Dittmar, C., Southall, C., Vogl, R., Widmer, G., Hockman, J., Muller, M., and Lerch, A. (2018). A review of automatic drum transcription. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26(9). DOI: 10.1109/TASLP.2018.2830113
  32. 32Yong, S., Choi, S., and Nam, J. (2020). PyTSMod: A Python implementation of time-scale modification algorithms. In Extended Abstracts for the Late-Breaking Demo Session of the 21st International Society for Music Information Retrieval Conference, Montreal, Canada.
DOI: https://doi.org/10.5334/tismir.150 | Journal eISSN: 2514-3298
Language: English
Submitted on: Sep 18, 2022
Accepted on: Jun 24, 2023
Published on: Sep 20, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Rohit M. Ananthanarayana, Amitrajit Bhattacharjee, Preeti Rao, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.