Have a personal or library account? Click to login
Salt-Marsh Foraminiferal Distributions from Mainland Northern Georgia, USA: An Assessment of Their Viability for Sea-Level Studies Cover

Salt-Marsh Foraminiferal Distributions from Mainland Northern Georgia, USA: An Assessment of Their Viability for Sea-Level Studies

Open Access
|Mar 2020

References

  1. 1 Akers, WH. 1971. Estuarine foraminiferal associations of the Beaufort area, North Carolina. Tulane Studies in Geology & Paleontology, 8: 147215.
  2. 2 Basan, P. 1979. Classification of low marsh habitats in a Georgia salt-marsh. Georgia Journal of Science.
  3. 3 Berkeley, A, Perry, CT, Smithers, SG, Horton, BP and Taylor, KG. 2007. A review of the ecological and taphonomic controls on foraminiferal assemblage development in intertidal environments. Earth – Sci Rev, 83: 205230. DOI: 10.1016/j.earscirev.2007.04.003
  4. 4 Birks, HJB. 1986. Numerical zonation, comparison and correlation of Quaternary pollen – stratigraphical data. In: Berglund, BE (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology, 743773. John Wiley and Sons.
  5. 5 Birks, HJB. 1995. Quantitative palaeoenvironmental reconstructions. In: Maddy, D and Brew, JS (eds.), Statistical modeling of Quaternary science data. Technical Guide 5, 161254. Cambridge: Quaternary Research Association. DOI: 10.1002/jqs.3390010111
  6. 6 Collins, ES, Scott, DB, Gayes, PT and Medioli, FS. 1995. Foraminifera in Winyah Bay and North Inlet marshes, South Carolina; relationship to local pollution sources. Cushman Foundation for Foraminiferal Research Ithaca Ny, 212273. DOI: 10.2113/gsjfr.25.3.212
  7. 7 Culver, SJ and Horton, BP. 2005. Infaunal Marsh Foraminifera from the Outer Banks, North Carolina, USA. J Foramin Res, 35: 148170. DOI: 10.2113/35.2.148
  8. 8 Culver, SJ, Leorri, E, Corbett, DR, Mallinson, DJ, Shazili, NAM, Mohammad, MN, Parham, PR and Yaacob, R. 2013. Infaunal mangrove swamp foraminifera in the Setiu wetland, Terengganu, Malaysia. J Foramin Res, 43: 262279. DOI: 10.2113/gsjfr.43.3.262
  9. 9 Duchemin, G, Jorissen, FJ, Redois, F and Debenay, JP. 2005. Foraminiferal microhabitats in a high marsh: Consequences for reconstructing past sea levels. Palaeogeogr Palaeocl, 226: 167185. DOI: 10.1016/j.palaeo.2005.05.009
  10. 10 Edward, R and Wright, AA. 2015. Chapter 13 Foraminifera. Handbook of Sea-Level Research, 191217. UK: John Wiley & Sons, Ltd. DOI: 10.1002/9781118452547.ch13
  11. 11 Edwards, RJ, Wright, AJ and van de Plassche, O. 2004. Surface distributions of salt-marsh foraminifera from Connecticut, USA: Modern analogues for high-resolution sea-level studies. Mar Micropaleontol, 51: 121. DOI: 10.1016/j.marmicro.2003.08.002
  12. 12 Engelhart, SE, Horton, BP, Vane, CH, Nelson, AR, Witter, RC, Brody, SR and Hawkes, AD. 2013. Modern foraminifera, δ13C, and bulk geochemistry of central Oregon tidal marshes and their application in paleoseismology. Palaeogeogr Palaeocl, 377: 1327. DOI: 10.1016/j.palaeo.2013.02.032
  13. 13 Gehrels, WR. 1994. Determining Relative Sea-level Change from Salt-marsh Foraminifera and Plant Zones on the Coast of Maine, U.S.A. J Coastal Res, 10: 9901009.
  14. 14 Gehrels, WR. 2000. Using foraminifera transfer functions to produce high – resolution sea-level records from salt-marsh deposits, Maine, USA. Holocene, 10: 367376. DOI: 10.1191/095968300670746884
  15. 15 Gehrels, WR and Plassche, OVD. 1999. The use of Jadammina macrescens (Brady) and Balticammina pseudomacrescens Brönnimann, Lutze and Whittaker (Protozoa: Foraminiferida) as sea-level indicators. Palaeogeogr Palaeocl, 149: 89101. DOI: 10.1016/S0031-0182(98)00194-1
  16. 16 Gerlach, MJ, Engelhart, SE, Kemp, AC, Moyer, RP, Smoak, JM, Bernhardt, CE and Cahill, N. 2017. Reconstructing Common Era relative sea-level change on the Gulf Coast of Florida. Mar Geol, 390: 254269. DOI: 10.1016/j.margeo.2017.07.001
  17. 17 Glew, JR, Smol, JP and Last, WM. 2001. Sediment core collection and extrusion. In: Tracking Environmental Change Using Lake Sediments: Volume 1, Basin Analysis, Coring, and Chronological Techniques, Last, WM and Smol, JP (eds.), 73105. Dordrecht, Netherlands: Kluwer Academic Publishers. DOI: 10.1007/0-306-47669-X_5
  18. 18 Goldstein, ST and Harben, EB. 1993. Taphofacies Implications of infaunal Foraminiferal Assemblages in a Georgia Salt-marsh, Sapelo Island. Micropaleontology, 39: 5362. DOI: 10.2307/1485974
  19. 19 Goldstein, ST and Watkins, GT. 1998. Elevation and the distribution of salt-marsh Foraminifera, St. Catherines Island, Georgia; a taphonomic approach. Palaios, 13: 570580. DOI: 10.2307/3515348
  20. 20 Goldstein, ST and Watkins, GT. 1999. Taphonomy of salt-marsh foraminifera: An example from coastal Georgia. Palaeogeography, Palaeoclimatology, Palaeoecology, 149: 103114. DOI: 10.1016/S0031-0182(98)00195-3
  21. 21 Goldstein, ST, Watkins, GT and Kuhn, RM. 1995. Microhabitats of salt-marsh foraminifera: St. Catherines Island, Georgia, USA. Mar Micropaleontol, 26: 1729. DOI: 10.1016/0377-8398(95)00006-2
  22. 22 Haines, EB. 1976. Stable carbon isotope ratios in the biota, soils and tidal water of a Georgia salt marsh. Estuarine & Coastal Marine Science, 4: 609616. DOI: 10.1016/0302-3524(76)90069-4
  23. 23 Hawkes, AD, Horton, BP, Nelson, AR and Hill, DF. 2010. The application of intertidal foraminifera to reconstruct coastal subsidence during the giant Cascadia earthquake of AD 1700 in Oregon, USA. Quatern Int, 221: 116140. DOI: 10.1016/j.quaint.2009.09.019
  24. 24 Hawkes, ADHU, Kemp, AC, Donnelly, JP, Horton, BP, Peltier, WR, Cahill, N, Hill, DF, Ashe, E and Alexander, CR. 2016. Relative sea-level change in northeastern Florida (USA) during the last ~8.0 ka. Quaternary Sci Rev, 90101. DOI: 10.1016/j.quascirev.2016.04.016
  25. 25 Hayward, BW and Hollis, CJ. 1994. Brackish Foraminifera in New Zealand: A Taxonomic and Ecologic Review. Micropaleontology, 40: 185222. DOI: 10.2307/1485816
  26. 26 Hayward, BW, Scott, GH, Grenfell, HR, Carter, R and Lipps, JH. 2004. Techniques for estimation of tidal elevation and confinement (~salinity) histories of sheltered harbours and estuaries using benthic foraminifera: Examples from New Zealand. Holocene, 14: 218232. DOI: 10.1191/0959683604hl678rp
  27. 27 Hill, MO and Gauch, HGG, Jr. 1980. Detrended correspondence analysis: An improved ordination technique. Vegetatio, 42: 4758. DOI: 10.1007/978-94-009-9197-2_7
  28. 28 Hippensteel, SP. 2002. Interannual variation of marsh foraminiferal assemblages (Bombay Hook National Wildlife Refuge, Smyrna in DE): Do foraminiferal assemblages have a memory? J Foramin Res, 32: 97109. DOI: 10.2113/0320097
  29. 29 Hippensteel, SP, Martin, RE, Nikitina, D and Pizzuto, JE. 2000. The formation of Holocene marsh foraminiferal assemblages, Middle Atlantic Coast, U.S.A.: Implications for holocene sea-level change. J Foramin Res, 30: 272293. DOI: 10.2113/0300272
  30. 30 Hoge, BE. 1994. The response of wetlands to sea level rise: Ecologic, paleoecologic, and taphonomic models, chapter wetland microfossil taphonomy and holocene sea-level fluctuations, Doctoral thesis, Rice University, 147.
  31. 31 Horton, BP and Culver, SJ. 2008. Modern Intertidal Foraminifera of the Outer Banks, North Carolina, U.S.A., and Their Applicability for Sea-level Studies. J Coastal Res, 24: 11101125. DOI: 10.2112/08A-0004.1
  32. 32 Horton, BP and Edwards, RJ. 2005. The application of local and regional transfer functions to the reconstruction of Holocene sea levels, north Norfolk, England. The Holocene, 15: 216228. DOI: 10.1191/0959683605hl787rp
  33. 33 Horton, BP and Edwards, R. 2006. Quantifying Holocene Sea Level Change Using Intertidal Foraminifera: Lessons from the British Isles. Philadelphia Annual Meeting.
  34. 34 Horton, BP, Edwards, RJ and Lloyd, JM. 1999. A foraminiferal – based transfer function: Implications for sea-level studies. J Foramin Res, 29: 117129. DOI: 10.2113/gsjfr.29.2.117
  35. 35 Horton, BP, Larcombe, P, Woodroffe, SA, Whittaker, JE, Wright, MR and Wynn, C. 2003. Contemporary foraminiferal distributions of a mangrove environment, Great Barrier Reef coastline, Australia: implications for sea-level reconstructions. Mar Geol, 198: 225243. DOI: 10.1016/S0025-3227(03)00117-8
  36. 36 Howard, JD and Frey, RW. 1985. Physical and biogenic aspects of backbarrier sedimentary sequences, Georgia Coast, U.S.A. Mar Geol, 77127. DOI: 10.1016/0025-3227(85)90080-5
  37. 37 Jennings, AE and Nelson, AR. 1992. Foraminiferal assemblage zones in Oregon tidal marshes; relation to marsh floral zones and sea level. J Foramin Res, 22: 1329. DOI: 10.2113/gsjfr.22.1.13
  38. 38 Kaufman, L and Rousseeuw, PJ. 1990. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley – Interscience. DOI: 10.1002/9780470316801
  39. 39 Kemp, AC, Bernhardt, CE, Horton, BP, Kopp, RE, Vane, CH, Peltier, WR, Hawkes, AD, Donnelly, JP, Parnell, AC and Cahill, N. 2014. Late Holocene sea- and land-level change on the U.S. southeastern Atlantic coast. Mar Geol, 357: 90100. DOI: 10.1016/j.margeo.2014.07.010
  40. 40 Kemp, AC, Horton, BP and Culver, SJ. 2009. Distribution of modern salt-marsh foraminifera in the Albemarle–Pamlico estuarine system of North Carolina, USA: Implications for sea-level research. Mar Micropaleontol, 72: 222238. DOI: 10.1016/j.marmicro.2009.06.002
  41. 41 Kemp, AC, Horton, BP, Vann, DR, Engelhart, SE, Grand Pre, CA, Vane, CH, Nikitina, D and Anisfeld, SC. 2012a. Quantitative vertical zonation of salt-marsh foraminifera for reconstructing former sea level; an example from New Jersey, USA. Quaternary Sci Rev, 54: 2639. DOI: 10.1016/j.quascirev.2011.09.014
  42. 42 Kemp, AC, Telford, RJ, Horton, BP, Anisfeld, SC and Sommerfield, CK. 2013. Reconstructing Holocene sea level using salt-marsh foraminifera and transfer functions: Lessons from New Jersey, USA. J Quaternary Sci, 28: 617629. DOI: 10.1002/jqs.2657
  43. 43 Kemp, AC, Vane, CH, Horton, BP, Engelhart, SE and Nikitina, D. 2012b. Application of stable carbon isotopes for reconstructing salt-marsh floral zones and relative sea level, New Jersey, USA. J Quaternary Sci, 27: 404414. DOI: 10.1002/jqs.1561
  44. 44 King, GM, Howes, BL and Dacey, JWH. 1985. Short-term endproducts of sulfate reduction in a salt marsh: Formation of acid volatile sulfides, elemental sulfur, and pyrite ☆. Geochim Cosmochim Ac, 49: 15611566. DOI: 10.1016/0016-7037(85)90261-3
  45. 45 Leorri, E and Martin, RE. 2009. The input of foraminiferal infaunal populations to sub – fossil assemblages along an elevational gradient in a salt-marsh: Application to sea-level studies in the mid – Atlantic coast of North America. Hydrobiologia, 625: 6981. DOI: 10.1007/s10750-008-9697-1
  46. 46 Letzsch, WS and Frey, RW. 1980. Deposition and erosion in a Holocene salt-marsh, Sapelo Island, Georgia. Journal of Sedimentary Petrology, 50: 529542. DOI: 10.1306/212F7A45-2B24-11D7-8648000102C1865D
  47. 47 Milker, Y, Horton, BP, Nelson, AR, Engelhart, SE and Witter, RC. 2015. Variability of intertidal foraminiferal assemblages in a salt-marsh, Oregon, USA. Mar Micropaleontol, 118: 116. DOI: 10.1016/j.marmicro.2015.04.004
  48. 48 Molen, JVD. 1997. Tidal Distortion and Spatial Differences in Surface Flooding Characteristics in a Salt Marsh: Implications for Sea-Level Reconstruction. Estuar. Coast. Shelf Sci., 45: 221233. DOI: 10.1006/ecss.1997.0179
  49. 49 Murray, JW and Bowser, SS. 2000. Mortality, protoplasm decay rate, and reliability of staining techniques to recognise ‘living’ foraminifera: A review. J Foramin Res, 30: 6670. DOI: 10.2113/0300066
  50. 50 Ozarko, DL, Williams, HFL and Patterson, RT. 1997. Marsh Foraminifera from Nanaimo, British Columbia (Canada): Implications of infaunal habitat and taphonomic biasing. J Foramin Res, 27: 5168. DOI: 10.2113/gsjfr.27.1.51
  51. 51 Patterson, RT, Dalby, AP, Roe, HM, Guilbault, JP, Hutchinson, I and Clague, JJ. 2005. Relative utility of foraminifera, diatoms and macrophytes as high resolution indicators of paleo – sea level in coastal British Columbia, Canada. Quaternary Sci Rev, 24: 20022014. DOI: 10.1016/j.quascirev.2004.11.013
  52. 52 Patterson, RT, Roland Gehrels, W, Belknap, DF and Dalby, AP. 2004. The distribution of salt-marsh foraminifera at Little Dipper Harbour New Brunswick, Canada: Implications for development of widely applicable transfer functions in sea-level research. Quatern Int, 120: 185194. DOI: 10.1016/j.quaint.2004.01.017
  53. 53 Phleger, FB. 1955. Ecology of Foraminifera in Southeastern Mississippi Delta Area. Aapg Bull, 39: 712752. DOI: 10.1306/5CEAE1CC-16BB-11D7-8645000102C1865D
  54. 54 R Development Core Team. 2011. R: A language and environment for statistical computing, Vienna, Austria. http://www.R-project.org.
  55. 55 Reynolds, A, Richards, G, de la Iglesia, B and Rayward-Smith, V. 1992. Clustering rules: A comparison of partitioning and hierarchical clustering algorithms. Journal of Mathematical Modelling and Algorithms, 5: 475504. DOI: 10.1007/s10852-005-9022-1
  56. 56 Rijk, SD. 1995. Salinity control on the distribution of salt-marsh foraminifera (Great Marshes, Massachusetts). J Foramin Res, 25: 156166. DOI: 10.2113/gsjfr.25.2.156
  57. 57 Rijk, SD and Troelstra, SR. 1997. Salt-marsh foraminifera from the Great Marshes, Massachusetts: Environmental controls. Palaeogeogr Palaeocl, 130: 81112. DOI: 10.1016/S0031-0182(96)00131-9
  58. 58 Rijk, SD and Troelstra, S. 1999. The application of a foraminiferal actuo – facies model to salt-marsh cores. Palaeogeogr Palaeocl, 149: 5966. DOI: 10.1016/S0031-0182(98)00192-8
  59. 59 Rousseeuw, P. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster techniques. J Comput Appl Math, 20: 5365. DOI: 10.1016/0377-0427(87)90125-7
  60. 60 Saffert, H and Thomas, E. 1998. Living foraminifera and total populations in salt-marsh peat cores: Kelsey Marsh (Clinton, CT) and the Great Marshes (Barnstable, MA). Mar Micropaleontol, 33: 175202. DOI: 10.1016/S0377-8398(97)00035-2
  61. 61 Scott, DB and Hermelin, JOR. 1993. A Device for Precision Splitting of Micropaleontological Samples in Liquid Suspension. J Paleontol, 67: 151154. DOI: 10.1017/S0022336000021302
  62. 62 Scott, DB and Medioli, FS. 1980a. Living vs. Total Foraminiferal Populations: Their Relative Usefulness in Paleoecology. J Paleontol, 54: 814831.
  63. 63 Scott, DB and Medioli, FS. 1980b. Quantitative studies of marsh foraminiferal distributions in Nova Scotia: Implications for sea level studies. Cushman Foundation for Foraminiferal Research.
  64. 64 Scott, DB and Medioli, FS. 1986. Foraminifera as sea-level indicators. Springer Netherlands. DOI: 10.1007/978-94-009-4215-8_15
  65. 65 Scott, DB, Medioli, FS and Schafer, CT. 2001. Monitoring in Coastal Environments using Foraminifera and Thecomebian Indicators. Cambridge University Press, New York. DOI: 10.1017/CBO9780511546020.007
  66. 66 Scott, DB, Schnack, EJ, Ferrero, L, Espinosa, M and Barbosa, CF. 1990. Recent Marsh Foraminifera from the East Coast of South America: Comparison to the Northern Hemisphere, 717737. DOI: 10.1007/978-94-011-3350-0_25
  67. 67 Scott, DS and Medioli, FS. 1978. Vertical zonations of marsh foraminifera as accurate indicators of former sea-levels. Nature, 272: 528531. DOI: 10.1038/272528a0
  68. 68 Shaw, TA, Kirby, JR, Holgate, S, Tutman, P and Plater, AJ. 2016. Contemporary Salt-marsh Foraminiferal Distribution from the Adriatic Coast of Croatia and Its Potential for Sea-level Studies. J Foramin Res, 46: 316332. DOI: 10.2113/gsjfr.46.3.314
  69. 69 Spencer, RS. 2000. Foraminiferal assemblages from a Virginia salt-marsh, Phillips Creek, Virginia. J Foramin Res, 30: 143155. DOI: 10.2113/0300143
  70. 70 Teal, JM and Kanwisher, J. 1961. Gas exchange in a Georgia saltmarsh. Limnol. Oceanogr, 6: 388399. DOI: 10.4319/lo.1961.6.4.0388
  71. 71 Tobin, R. 2005. Infaunal benthic foraminifera in some North American marshes and their influence on fossil assemblages. J Foramin Res, 35: 130147. DOI: 10.2113/35.2.130
  72. 72 Vance, DJ. 2006. Foraminifera in the Albemarle Estuarine System, North Carolina: Distribution and recent environmental change. J Foramin Res, 36: 1533. DOI: 10.2113/36.1.15
  73. 73 Walton, WR. 1952. Techniques for recognition of living foraminifera. Contributions from the Cushman Foundation for Foraminiferal Research, 3: 5660.
  74. 74 Wang, P and Chappell, J. 2001. Foraminifera as Holocene environmental indicators in the South Alligator River, Northern Australia. Quatern Int, 83–85: 4762. DOI: 10.1016/S1040-6182(01)00030-1
  75. 75 White, SN. 2004. Spartina species zonation along an estuarine gradient in Georgia: Exploring mechanisms controlling distribution. Doctoral thesis. The University of Georgia.
  76. 76 Williams, HFL. 1994. Intertidal Benthic Foraminiferal Biofacies on the Central Gulf Coast of Texas: Modern Distribution and Application to Sea Level Reconstruction. Micropaleontology, 40: 169183. DOI: 10.2307/1485774
  77. 77 Woodroffe, S, Horton, BP and Whittaker, J. 2005. Intertidal mangrove foraminifera from the central Great Barrier Reef shelf, Australia: Implications for sea-level reconstruction. J Foramin Res, 35: 259270. DOI: 10.2113/35.3.259
  78. 78 Wright, AJ, Edwards, RJ and van de Plassche, O. 2011. Reassessing transfer – function performance in sea-level reconstruction based on benthic salt-marsh foraminifera from the Atlantic coast of NE North America. Mar Micropaleontol, 81: 4362. DOI: 10.1016/j.marmicro.2011.07.003
DOI: https://doi.org/10.5334/oq.80 | Journal eISSN: 2055-298X
Language: English
Submitted on: Feb 28, 2020
Accepted on: Feb 28, 2020
Published on: Mar 26, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Huixian Chen, Timothy A. Shaw, Jianhua Wang, Simon Engelhart, Daria Nikitina, Jessica E. Pilarczyk, Jennifer Walker, Ane García-Artola, Benjamin P. Horton, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.