Have a personal or library account? Click to login
Methodological Advances in Understanding Environmental Constraints on Sustainability and Industrial Periodicity of Ancient Copper Smelting in Southeast Arabia Cover

Methodological Advances in Understanding Environmental Constraints on Sustainability and Industrial Periodicity of Ancient Copper Smelting in Southeast Arabia

Open Access
|Apr 2025

References

  1. 1Abdoul-Salam, K, Massaoudou, M, Abdoul Rahamane, IK, Abass, T and zoubérou, AM. 2021. ‘Moringa oleifera based agroforestry system in carbon sequestration’. Journal of Innovative Agriculture, 8(3): 17. DOI: 10.37446/jinagri/rsa/8.3.2021.17-24
  2. 2al Hatmi, S and Lupton, DA. 2021. ‘Documenting the most widely utilized plants and the potential threats facing ethnobotanical practices in the Western Hajar Mountains, Sultanate of Oman’. Journal of Arid Environments, 189(August 2020): 111. DOI: 10.1016/j.jaridenv.2021.104484
  3. 3Asouti, E and Austin, P. 2005. ‘Reconstructing woodland vegetation and its exploitation by past societies, based on the analysis and interpretation of archaeological wood charcoal macro-remains’. Environmental Archaeology, 10(1): 118. DOI: 10.1179/env.2005.10.1.1
  4. 4Asouti, E and Kabukcu, C. 2021. ‘Anthracology: Charcoal Science in Archaeology and Palaeoecology’. Quaternary International, 593–594: 15. DOI: 10.1016/j.quaint.2021.05.013
  5. 5Bennison, AK. 2011. The Great Caliphs: the Golden Age of the Abbasid Empire. London: I.B.Tauris.
  6. 6Cavanagh, M, Ben-Yosef, E and Langgut, D. 2022. ‘Fuel exploitation and environmental degradation at the Iron Age copper industry of the Timna Valley, southern Israel’. Scientific Reports, 12(1): 15434. DOI: 10.1038/s41598-022-18940-z
  7. 7Chew, SC. 2001. World Ecological Degradation: Accumulation, Urbanization, and Deforestation, 3000 B.C.-A.D. 2000. Walnut Creek: AltaMira Press.
  8. 8Cremaschi, M, Degli Esposti, M, Fleitmann, D, Perego, A, Sibilia, E and Zerboni, A. 2018. ‘Late Holocene onset of intensive cultivation and introduction of the falaj irrigation system in the Salut oasis (Sultanate of Oman)’. Quaternary Science Reviews, 200: 123140. DOI: 10.1016/j.quascirev.2018.09.029
  9. 9Crew, P and Mighall, T. 2013. ‘The fuel supply and woodland management at a 14th century bloomery in Snowdonia: a multi-disciplinary approach’. In: Humphris, J and Rehren, T (eds.) The World of Iron. London: Archetype Publications, pp. 473482.
  10. 10Dufraisse, A, Coubray, S, Picornell-Gelabert, L, Alcolea, M, Girardclos, O, Delarue, F and Nguyen Tu, T.T. 2022. ‘Taming Trees, Shaping Forests, and Managing Woodlands as Resources for Understanding Past Societies’. Contributions and Current Limits of Dendro-Anthracology and Anthraco-Isotopy. Frontiers in Ecology and Evolution, 10: 110. DOI: 10.3389/fevo.2022.823968
  11. 11Eckstein, D, Liese, W and Stieber, J. 1987. ‘Holzversorgun im prähistorischen Kupferbergbau in Oman’. Naturwissenschaftliche Rundschau, 11: 426430.
  12. 12Eichhorn, B, Robion-Brunner, C, Serneels, V and Perret, S. 2013. ‘Fuel for iron- wood exploitation for metallurgy on the Dogon Plateau, Mali’. In: Humphris, J and Rehren, T (eds.) The World of Iron, London: Archetype Publications, pp. 435444.
  13. 13Ellis, EC. 2021. ‘Land Use and Ecological Change: A 12,000-Year History’. Annual Review of Environment and Resources, 46: 133. DOI: 10.1146/annurev-environ-012220-010822
  14. 14Fern, RR, Foxley, EA, Bruno, A and Morrison, ML. 2018. ‘Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland’. Ecological Indicators, 94(1), 1621. DOI: 10.1016/j.ecolind.2018.06.029
  15. 15Feyisa, K, Beyene, S, Megersa, B, Said, MY, de Leeuw, J and Angassa, A. 2018. ‘Allometric equations for predicting above-ground biomass of selected woody species to estimate carbon in East African rangelands’. Agroforestry Systems, 92(3): 599621. DOI: 10.1007/s10457-016-9997-9
  16. 16Fleitmann, D and Matter, A. 2009. ‘The speleothem record of climate variability in Southern Arabia’. Comptes Rendus – Geoscience, 341(8–9), 633642. DOI: 10.1016/j.crte.2009.01.006
  17. 17Fleitmann, D, Haldon, J, Bradley, RS, Burns, SJ, Cheng, H, Edwards, RL, Raible, CC, Jacobson, M and Matter, A. 2022. Droughts and societal change: The environmental context for the emergence of Islam in late Antique Arabia. Science, 376(6599): 13171321. DOI: 10.1126/science.abg4044
  18. 18Frieman, C. 2021. An Archaeology of Innovation: Approaching Social and Technological Change in Human Society. Manchester: Manchester University Press. DOI: 10.7765/9781526132659
  19. 19Fuchs, M and Buerkert, A. 2008. ‘A 20ka sediment record from the Hajar Mountain range in N-Oman, and its implication for detecting arid-humid periods on the southeastern Arabian Peninsula’. Earth and Planetary Science Letters, 265(3–4): 546558. DOI: 10.1016/j.epsl.2007.10.050
  20. 20Ghazanfar, SA. 1991. ‘Vegetation structure and phytogeography of Jabal Shams, an arid mountain in Oman’. Journal of Biogeography, 18(3): 299309. DOI: 10.2307/2845400
  21. 21Ghazanfar, SA. 2007. ‘Flora of the Sultanate of Oman Volume 2, Crassulaceae – Apiaceae’. Meise: National Botanic Garden of Belgium.
  22. 22Goucher, CL. 1981. ‘Iron is Iron ‘til it is rust: Trade and Ecology in the Decline of West African Iron-Smelting’. The Journal of African History, 22(2): 179189. DOI: 10.1017/S0021853700019393
  23. 23Håland, R. 1980. ‘Man’s role in the changing habitat of Mema during the Old Kingdom of Ghana’. Norwegian Archaeological Review, 13(1): 3146. DOI: 10.1080/00293652.1980.9965328
  24. 24Haldon, J and Fleitmann, D, 2024. A Sixth-Century CE Drought in Arabia New Palaeoclimate Data and Some Historical Implications. Journal of Late Antique, Islamic and Byzantine Studies, 3(1–2): 145. DOI: 10.3366/jlaibs.2023.0024
  25. 25Harrower, M, McCorriston, J and Oches, EA. 2002. ‘Mapping the roots of agriculture in southern Arabia: The application of satellite remote sensing, global positioning system and geographic information system technologies’. Archaeological Prospection, 9(1): 3542. DOI: 10.1002/arp.182
  26. 26Hauptmann, A. 1985. 5000 Jahre Kupfer in Oman. Band 1, Die Entwicklung der Kupfermetallurgie vom 3. Jahrtausend bis zur Neuzeit. Bochum: Deutsches Bergbau-Museum. http://www.sudoc.fr/173117473.
  27. 27Horne, L. 1982. ‘Fuel for the Metal Worker’. Expedition, 25(1): 63.
  28. 28Humphris, J and Eichhorn, B. 2019. “Fuel selection during long-term ancient iron production in Sudan.” Azania: Archaeological Research in Africa, 54(1): 3354. DOI: 10.1080/0067270X.2019.1578567
  29. 29Ibrahim, MM and el Mahi, AT. 2000. ‘Metallurgy in Oman during the Early Islamic Period’. In: Stager, LE, Greene, JA and Coogan, MD (eds.) The Archaeology of Jordan and Beyond. Leiden: Brill, pp. 207220. DOI: 10.1163/9789004369801_024
  30. 30Iles, L. 2016. ‘The Role of Metallurgy in Transforming Global Forests’. Journal of Archaeological Method and Theory, 23(4): 12191241. DOI: 10.1007/s10816-015-9266-7
  31. 31Jaiswal, D, Patel, CN, Solanki, HA and Pandya, HA. 2018. ‘Allometric model to determine carbon stock from DBH of major tree species in Mansa Range, Gandhinagar’. International Journal of Research in Advent Technology, 6(June): 13021312.
  32. 32Kabukcu, C. 2018. ‘Identification of woodland management practices and tree growth conditions in archaeological fuel waste remains: A case study from the site of Çatalhöyük in central Anatolia, Turkey’. Quaternary International, 463: 282297. DOI: 10.1016/j.quaint.2017.03.017
  33. 33Kaufman, B and Scott, DA. 2015. ‘Fuel Efficiency of Ancient Copper Alloys: Theoretical Melting Thermodynamics of Copper, Tin and Arsenical Copper and Timber Conservation in the Bronze Age Levant’. Archaeometry, 57(6): 10091024. DOI: 10.1111/arcm.12127
  34. 34Kirch, PV. 2005. ‘Archaeology and Global Change: The Holocene Record’. Annual Review of Environment and Resources, 30: 409440. DOI: 10.1146/annurev.energy.29.102403.140700
  35. 35Lalmuankima, HT. 2019. Studies on wood charcoal production, utilization and its environmental impact in Mizoram.
  36. 36Larsen, JK, Nielsen, NH and Olsen, J. 2024. ‘Fuel use in medieval iron production in central Jutland, Denmark’. Archaeological and Anthropological Sciences, 16(11): 177. DOI: 10.1007/s12520-024-02087-1
  37. 37Lehner, JW, Dumitru, IA, Buffington, A, Dollarhide, E, Nathan, S, Paulsen, P, Young, ML, Sivitskis, AJ, Wiig, F and Harrower, MJ. 2023. ‘Iron Age Copper Metallurgy in Southeast Arabia: A Comparative Perspective’. In: Ben-Yosef, E and Jones, IWN (eds.) “And in Length of Days Understanding” (Job 12:12): Essays on Archaeology in the Eastern Mediterranean and Beyond in Honor of Thomas E. Levy. Cham: Springer International Publishing, pp. 13911417. DOI: 10.1007/978-3-031-27330-8_59
  38. 38Lehner, JW, Harrower, MJ, Dumitru, IA, Nathan, S, Dollarhide, EN, Buffington, A, Paulsen, P, Al-Jabri, S, Zaribaf, A, Fisher, B, Francke, J and Wiig, F. 2020. Survey and Excavations in Wadi al-Raki, Wadi Dhahir al-Fawaris and ‘Uqdat al-Bakrah, Archaeological Water Histories of Oman (ArWHO) Project Field Report.
  39. 39Lézine, AM, Ivory, SJ, Braconnot, P and Marti, O. 2017. ‘Timing of the southward retreat of the ITCZ at the end of the Holocene Humid Period in Southern Arabia: Data-model comparison’. Quaternary Science Reviews, 164: 6876. DOI: 10.1016/j.quascirev.2017.03.019
  40. 40Maguire, DA, Schreuder, GF and Shaikh, M. 1990. ‘A biomass/yield model for high-density Acacia nilotica plantations in Sind, Pakistan’. Forest Ecology and Management, 37(4): 285302. DOI: 10.1016/0378-1127(90)90097-U
  41. 41Marston, JM. 2009. ‘Modeling Wood Acquisition Strategies from Archaeological Remains’. Journal of Archaeological Science, 36: 21922200. DOI: 10.1016/j.jas.2009.06.002
  42. 42Miller, CS, Leroy, SAG, Collins, PEF and Lahijani, HAK. 2016. ‘Late Holocene vegetation and ocean variability in the Gulf of Oman’. Quaternary Science Reviews, 143: 120132. DOI: 10.1016/j.quascirev.2016.05.010
  43. 43Miller, NF. 1984. ‘The use of dung as fuel: an ethnographic example and an archaeological application’. Paléorient 10(2): 7179. DOI: 10.3406/paleo.1984.941
  44. 44Mojtahedi, N. 1955. Charcoal and its chemical compounds. Tehran, Imp. Tchape Co. [in Persian]
  45. 45Moussa, M, Abasse, T, Abdou, IK and Larwanou, M. 2019. ‘Applying an indirect method for estimating and modelling the aboveground biomass and carbon for wood energy in the arid ecosystems of Ar Tenr of Niger’. Journal of Ecology and The Natural Environment, 11(9): 115126. DOI: 10.5897/JENE2019.0795
  46. 46Okello, BD, O’Connor, TG and Young, TP. 2001. ‘Growth, biomass estimates, and charcoal production of Acacia drepanolobium in Laikipia, Kenya’. Forest Ecology and Management, 142(1–3): 143153. DOI: 10.1016/S0378-1127(00)00346-7
  47. 47Petraglia, MD, Groucutt, HS, Guagnin, M, Breeze, PS and Boivin, N. 2020. ‘Human responses to climate and ecosystem change in ancient Arabia’. Proceedings of the National Academy of Sciences of the United States of America, 117(15): 82638270. DOI: 10.1073/pnas.1920211117
  48. 48Pollard, AM and Gosden, C. 2023. An Archaeological Perspective on the History of Technology. Cambridge: Cambridge University Press. DOI: 10.1017/9781009184205
  49. 49Proctor, L, Döpper, S and Schmidt, C. 2024. ‘Hafit period fuelwood preferences associated with early copper production at Building V, al-Khashbah, Oman’. Proceedings of the Seminar for Arabian Studies, 53: 230247.
  50. 50Raizada, A, Rao, MSRM, Nambiar, KTN and Padmaiah, M. 2007. ‘Biomass Production and Prediction models for Acacia Nilotica in Salt Affected Vertisols in Karnataka’. Indian Forester, 2(133): 239246.
  51. 51Roux, V. 2010. ‘Technological Innovations and Developmental Trajectories: Social Factors as Evolutionary Forces’. In: O’Brian, MJ and Shennan, SJ (eds.) Innovation in Cultural Systems: Contributions from Evolutionary Anthropology. Cambridge: MIT Press, pp. 217233. DOI: 10.7551/mitpress/8102.003.0019
  52. 52Shackleton, CM and Scholes, RJ. 2011. ‘Above ground woody community attributes, biomass and carbon stocks along a rainfall gradient in the savannas of the central lowveld, South Africa’. South African Journal of Botany, 77(1): 184192. DOI: 10.1016/j.sajb.2010.07.014
  53. 53Sivitskis, AJ, Lehner, JW, Harrower, MJ, Dumitru, IA, Paulsen, PE, Nathan, S, Viete, DR, Al-Jabri, S, Helwing, B, Wiig, F, Moraetis, D and Pracejus, B. 2019. ‘Detecting and mapping slag heaps at ancient copper production sites in Oman’. Remote Sensing, 11(24): 124. DOI: 10.3390/rs11243014
  54. 54Smith, A, Dotzel, K, Fountain, L, Proctor, L and Von Baeyer, M, 2015. ‘Examining Fuel Use in Antiquity: Archaeobotanical and Anthracological Approaches in Southwest Asia’. Ethnobiology Letters, 6(1): 192195. DOI: 10.14237/ebl.6.1.2015.416
  55. 55Smith, A, Proctor, L, Hart, TC and Stein, GJ, 2019. ‘The burning issue of dung in archaeobotanical samples: a case-study integrating macro-botanical remains, dung spherulites, and phytoliths to assess sample origin and fuel use at Tell Zeidan, Syria’. Vegetation History and Archaeobotany, 28(3): 229246. DOI: 10.1007/s00334-018-0692-9
  56. 56Tengberg, M. 2002. ‘The importation of wood to the Arabian Gulf in antiquity. The evidence from charcoal analysis’. Proceedings of the Seminar for Arabian Studies, 32: 1921. DOI: 10.4324/9780203037263-5
  57. 57Urban, B and Buerkert, A. 2009. ‘Palaeoecological analysis of a Late Quaternary sediment profile in northern Oman’. Journal of Arid Environments, 73(3): 296305. DOI: 10.1016/j.jaridenv.2008.09.023
  58. 58Verly, G, Rademakers, FW, Somaglino, C, Tallet, P, Delvaux, L and Degryse, P. 2021. ‘The Chaîne Opératoire of Middle Kingdom smelting batteries and the problem of fuel: Excavation, experimental and analytical studies on ancient Egyptian metallurgy’. Journal of Archaeological Science: Reports, 37: 102708. DOI: 10.1016/j.jasrep.2020.102708
  59. 59Vreugdenhil, D, Payton, IJ, Vreugdenhil, A, Tilahun, T, Nune, S and Weeks, E. 2012. ‘Carbon baseline and mechanisms for payments for carbon environmental services from protected areas in Ethiopia’. World Institute for Conservation and Environment. Addis Ababa, Ethiopia.
  60. 60Weeks, L, Cable, C, Franke, K, Newton, C, Karacic, S, Roberts, J, Stepanov, I, David-Cuny, H, Price, D, Bukhash, RM, Radwan, MB and Zein, H. 2017. ‘Recent archaeological research at Saruq al-Hadid, Dubai, UAE’. Arabian Archaeology and Epigraphy, 28(1): 3160. DOI: 10.1111/aae.12082
  61. 61Weeks, LR. 2003. Early Metallurgy of the Persian Gulf: Technology, Trade, and the Bronze Age World. Boston: American School of Prehistoric Research and Brill Academic Publishers. DOI: 10.1163/9789004495449
  62. 62Weisgerber, G. 1978a. ‘Evidence of Ancient Mining Sites in Oman: a Preliminary Report’. Journal of Oman Studies, 4: 1528.
  63. 63Weisgerber, G. 1978b. ‘A New Kind of Copper Slag from Tawi Aarja, Oman’. Journal of the Historical Metallurgy Society, 12(1): 4043.
  64. 64Weisgerber, G. 1980. ‘Patterns of Early Islamic Metallurgy in Oman’. Proceedings of the Seminar for Arabian Studies, 10: 115126. http://www.jstor.org/stable/41222972.
  65. 65Weisgerber, G. 1987. ‘Archaeological evidence of copper exploitation at Arja’. Journal of Oman Studies, 9: 145172.
  66. 66Weisgerber, G. 2008. ‘Metallurgy in Arabia’. In: Selin, H (ed.) Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Dordrecht: Springer, pp. 16131622. DOI: 10.1007/978-1-4020-4425-0_8784
  67. 67Wiig, F, Harrower, MJ, Braun, A, Nathan, S, Lehner, JW, Simon, KM, Sturm, JO, Trinder, J, Dumitru, IA, Hensley, S and Clark, T. 2018. ‘Mapping a subsurface water channel with X-band and C-band synthetic aperture radar at the iron age archaeological site of ‘Uqdat al-Bakrah (Safah), Oman’. Geosciences, 8(9): 334. DOI: 10.3390/geosciences8090334
  68. 68Yule, P and Gernez, G. (eds.) 2018. ‘Early Iron Age Metal-Working Workshop in the Empty Quarter, al-Ẓāḥira Province, Sultanate of Oman’. Universitätsforschungen zur prähistorischen Archäologie, 316. Bonn: Habelt-Verlag.
  69. 69Yule, P. 2021. ‘Wood supply in prehistoric and early historic Oman’. In: Bührig, C, van Ess, M, Gerlach, I, Hausleiter, A and Müller-Neuhof, B (eds.) Klänge der Archäologie: Festschrift für Ricardo Eichmann. Wiesbaden: Harrassowitz Verlag, pp. 481488.
  70. 70Zaribaf, A, Lehner, J, Paulsen, P, Dumitru, IA, Sivitskis, A, Arsenault, B, Fisher, B, Buffington, A, Dollarhide, E and Harrower, MJ. 2024. ‘Socio-political factors influencing early Islamic copper production in Oman’. Proceedings of the Seminar for Arabian Studies, 53: 316332. https://archaeopresspublishing.com/ojs/index.php/PSAS/article/view/2249.
DOI: https://doi.org/10.5334/oq.147 | Journal eISSN: 2055-298X
Language: English
Submitted on: Jun 30, 2024
Accepted on: Mar 18, 2025
Published on: Apr 14, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Amir Zaribaf, Joseph W. Lehner, Abigail Buffington, Ioana A. Dumitru, Smiti Nathan, Paige Paulsen, Alexander J. Sivitskis, Eli Dollarhide, Michael J. Harrower, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.