Have a personal or library account? Click to login
Old Fossils, New Information: Insights into Site Formation Processes of Two Pleistocene Cave Sequences in Zambia from Enamel Amino Acid Geochronology Cover

Old Fossils, New Information: Insights into Site Formation Processes of Two Pleistocene Cave Sequences in Zambia from Enamel Amino Acid Geochronology

Open Access
|Sep 2024

References

  1. 1Abelson, PH. 1955. ‘Organic constituents of fossils’. Carnegie Institute of Washington Year Book, 54: 107109.
  2. 2Adams, JW, Herries, AI, Kuykendall, KL and Conroy, GC. 2007. ‘Taphonomy of a South African cave: geological and hydrological influences on the GD 1 fossil assemblage at Gondolin, a Plio-Pleistocene paleocave system in the Northwest Province, South Africa’. Quaternary Science Reviews, 26(19–21): 25262543. DOI: 10.1016/j.quascirev.2007.05.006
  3. 3Bada, JL, Shou, MY, Man, EH and Schroeder, RA. 1978. ‘Decomposition of hydroxy amino acids in foraminiferal tests; kinetics, mechanism and geochronological implications’. Earth and Planetary Science Letters, 41(1): 6776. DOI: 10.1016/0012-821X(78)90042-0
  4. 4Baldreki, C. 2024. Revisiting past excavations from South-Central Africa: palaeoenvironmental, biomolecular and geochronological analysis to improve archaeological understanding. Unpublished thesis (PhD), University of York.
  5. 5Baldreki, C, Burnham, A, Conti, M, Wheeler, L, Simms, MJ, Barham, L, White, TS and Penkman, K. 2024. ‘Investigating the potential of African land snail shells (Gastropoda: Achatininae) for amino acid geochronology’. Quaternary Geochronology, 79: 101473. DOI: 10.1016/j.quageo.2023.101473
  6. 6Barham, LS. 2000. The Middle Stone Age of Zambia, South Central Africa. Western Academic & Specialist Press.
  7. 7Barham, LS and Debenham, N. Chapter 3 in Barham, L.S. 2000. The Middle Stone Age of Zambia, South Central Africa. Western Academic & Specialist Press.
  8. 8Barham, L. 2002. ‘Systematic pigment use in the Middle Pleistocene of South-Central Africa’. Current anthropology, 43(1): 181190. DOI: 10.1086/338292
  9. 10Barham, L, Duller, GAT, Candy, I, Scott, C, Cartwright, CR, Peterson, JR, Kabukcu, C, Chapot, MS, Melia, F, Rots, V and George, N. 2023. ‘Evidence for the earliest structural use of wood at least 476,000 years ago’. Nature, 15. DOI: 10.1038/s41586-023-06557-9
  10. 9Barham, L and Mitchell, P. 2008. The First Africans: African Archaeology from the Earliest Toolmakers to Most Recent Foragers. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511817830
  11. 12Bishop, LC, Barham, L, Ditchfield, PW, Elton, S, Harcourt-Smith, WE and Dawkins, P. 2016. ‘Quaternary fossil fauna from the Luangwa Valley, Zambia’. Journal of Quaternary Science, 31(3): 178190. DOI: 10.1002/jqs.2855
  12. 11Bishop, LC and Reynolds, SC. Chapter 11 Fauna from Twin Rivers in Barham, L.S. 2000. The Middle Stone Age of Zambia, South Central Africa. Western Academic & Specialist Press.
  13. 13Bowen, DQ, Hughes, S, Sykes, GA and Miller, GH. 1989. ‘Land-sea correlations in the Pleistocene based on isoleucine epimerization in non-marine molluscs’. Nature, 340(6228): 4951. DOI: 10.1038/340049a0
  14. 14Brain, CK. 1983. The hunters or the hunted?: an introduction to African cave taphonomy. University of Chicago Press.
  15. 15Bright, J and Kaufman, DS. 2011. ‘Amino acid racemization in lacustrine ostracodes, part I: effect of oxidizing pre-treatments on amino acid composition’. Quaternary Geochronology, 6(2): 154173. DOI: 10.1016/j.quageo.2010.11.006
  16. 16Brooks, AS, Hare, PE, Kokis, JE, Miller, GH, Ernst, RD and Wendorf, F. 1990. ‘Dating Pleistocene archeological sites by protein diagenesis in ostrich eggshell’. Science, 248(4951): 6064. DOI: 10.1126/science.248.4951.60
  17. 18Burrough, SL, Thomas, DS, Allin, JR, Coulson, SD, Mothulatshipi, SM, Nash, DJ and Staurset, S. 2022. ‘Lessons from a lakebed: unpicking hydrological change and early human landscape use in the Makgadikgadi basin, Botswana’. Quaternary Science Reviews, 107662. DOI: 10.1016/j.quascirev.2022.107662
  18. 17Burrough, SL, Thomas, DSG and Barham, LS. 2019. ‘Implications of a new chronology for the interpretation of the Middle and Later Stone Age of the upper Zambezi Valley’. Journal of Archaeological Science: Reports, 23: 376389. DOI: 10.1016/j.jasrep.2018.10.016
  19. 19Cappellini, E, Welker, F, Pandolfi, L, Ramos-Madrigal, J, Samodova, D, Rüther, PL, Fotakis, AK, Lyon, D, Moreno-Mayar, JV, Bukhsianidze, M and Rakownikow Jersie-Christensen, R. 2019. ‘Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny’. Nature, 574(7776): 103107. DOI: 10.1038/s41586-019-1555-y
  20. 20Chan, EK, Timmermann, A, Baldi, BF, Moore, AE, Lyons, RJ, Lee, SS, Kalsbeek, AM, Petersen, DC, Rautenbach, H, Förtsch, HE and Bornman, M. 2019. ‘Human origins in a southern African palaeo-wetland and first migrations’. Nature, 575(7781): 185189. DOI: 10.1038/s41586-019-1714-1
  21. 21Clark, JD and Brown, KS. 2001. ‘The Twin Rivers Kopje, Zambia: stratigraphy, fauna, and artefact assemblages from the 1954 and 1956 excavations’. Journal of Archaeological Science, 28(3): 305330. DOI: 10.1006/jasc.2000.0563
  22. 22Crisp, M, Demarchi, B, Collins, M, Morgan-Williams, M, Pilgrim, E and Penkman, K. 2013a. ‘Isolation of the intra-crystalline proteins and kinetic studies in Struthio camelus (ostrich) eggshell for amino acid geochronology’. Quaternary Geochronology, 16: 110128. DOI: 10.1016/j.quageo.2012.09.002
  23. 23Crisp, MK. 2013b. Amino acid racemization dating: Method development using African ostrich (Struthio camelus) eggshell. Unpublished thesis (PhD), University of York.
  24. 24Demarchi, B, Rogers, K, Fa, DA, Finlayson, CJ, Milner, N and Penkman, KEH. 2013a. ‘Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part I: Isolation and testing of the closed system’. Quaternary Geochronology, 16: 144157. DOI: 10.1016/j.quageo.2012.03.016
  25. 25Demarchi, B, Collins, M, Bergström, E, Dowle, A, Penkman, K, Thomas-Oates, J and Wilson, J. 2013b. ‘New experimental evidence for in-chain amino acid racemization of serine in a model peptide’. Analytical chemistry, 85(12): 58355842. DOI: 10.1021/ac4005869
  26. 26Demarchi, B, Clements, E, Coltorti, M, Van De Locht, R, Kröger, R, Penkman, K and Rose, J. 2015. ‘Testing the effect of bleaching on the bivalve Glycymeris: A case study of amino acid geochronology on key Mediterranean raised beach deposits’. Quaternary Geochronology, 25: 4965. DOI: 10.1016/j.quageo.2014.09.003
  27. 27Dennell, R. 2008. The palaeolithic settlement of Asia. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511818882
  28. 28Dickinson, MR, Lister, AM and Penkman, KE. 2019. ‘A new method for enamel amino acid racemization dating: a closed system approach’. Quaternary Geochronology, 50: 2946. DOI: 10.1016/j.quageo.2018.11.005
  29. 29Dickinson, MR, Scott, K, Adams, NF, Lister, AM and Penkman, KEH. 2024. ‘Amino acid dating of Pleistocene mammalian enamel from the River Thames terrace sequence: a multi-taxon approach’. Quaternary Geochronology, p. 101543. DOI: 10.1016/j.quageo.2024.101543
  30. 30Duller, GA, Tooth, S, Barham, L and Tsukamoto, S. 2015. ‘New investigations at Kalambo Falls, Zambia: Luminescence chronology, site formation, and archaeological significance’. Journal of Human Evolution, 85: 11125. DOI: 10.1016/j.jhevol.2015.05.003
  31. 31French, JC. 2021. Palaeolithic Europe: A Demographic and Social Prehistory. Cambridge: Cambridge University Press. DOI: 10.1017/9781108590891
  32. 32Grün, R, Pike, A, McDermott, F, Eggins, S, Mortimer, G, Aubert, M, Kinsley, L, Joannes-Boyau, R, Rumsey, M, Denys, C and Brink, J. 2020. ‘Dating the skull from Broken Hill, Zambia, and its position in human evolution’. Nature, 580(7803): 3725. DOI: 10.1038/s41586-020-2165-4
  33. 33Hare, PE and Mitterer, RM. 1967. ‘Non-protein amino acids in fossil shells’. Carnegie Institute Washington Year Book, 65: 362364.
  34. 34Hare, PE and Mitterer, RM. 1969. ‘Laboratory simulation of amino acid diagenesis in fossils’. Carnegie Institute Washington Year Book, 67: 205208.
  35. 35Hearty, PJ and Kaufman, DS. 2009. ‘A Cerion-based chronostratigraphy and age model from the central Bahama Islands: Amino acid racemization and 14C in land snails and sediments’. Quaternary Geochronology, 4(2): 14859. DOI: 10.1016/j.quageo.2008.08.002
  36. 36Hendy, EJ, Tomiak, PJ, Collins, MJ, Hellstrom, J, Tudhope, AW, Lough, JM and Penkman, KE. 2012. ‘Assessing amino acid racemization variability in coral intra-crystalline protein for geochronological applications’. Geochimica et Cosmochimica Acta, 86: 33853. DOI: 10.1016/j.gca.2012.02.020
  37. 37Hill, RL. 1965. ‘Hydrolysis of proteins’. Advances in Protein Chemistry, 20: 37107. DOI: 10.1016/S0065-3233(08)60388-5
  38. 39Kaufman, DS. 2006. ‘Temperature sensitivity of aspartic and glutamic acid racemization in the foraminifera Pulleniatina. Quaternary Geochronology, 1(3): 188207. DOI: 10.1016/j.quageo.2006.06.008
  39. 38Kaufman, DS and Manley, WF. 1998. ‘A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography’. Quaternary Science Reviews, 17(11): 9871000. DOI: 10.1016/S0277-3791(97)00086-3
  40. 40King, KJ and Hare, PE. 1972. ‘Species effects in the epimerization of L-isoleucine in fossil planktonic foraminifera’. Carnegie Institute Washington Year Book, 71: 596598.
  41. 41Klein, RG and Cruz-Uribe, K. Chapter 4 in Barham, L.S. 2000. The Middle Stone Age of Zambia, South Central Africa. Western Academic & Specialist Press.
  42. 42Koppel, B, Szabo, K, Moore, MW and Morwood, MJ. 2016. ‘Untangling time-averaging in shell middens: defining temporal units using amino acid racemisation’. Journal of Archaeological Science: Reports, 7: 74150. DOI: 10.1016/j.jasrep.2015.08.040
  43. 43Kosnik, MA and Kaufman, DS. 2008. ‘Identifying outliers and assessing the accuracy of amino acid racemization measurements for geochronology: II’. Data screening. Quaternary Geochronology, 3(4): 328341. DOI: 10.1016/j.quageo.2008.04.001
  44. 44Marin-Monfort, MD, García-Morato, S, Andrews, P, Avery, DM, Chazan, M, Horwitz, LK and Fernández-Jalvo, Y. 2022. ‘The owl that never left! Taphonomy of Earlier Stone Age small mammal assemblages from Wonderwerk Cave (South Africa)’. Quaternary International, 614: 11125. DOI: 10.1016/j.quaint.2021.04.014
  45. 45Mitterer, RM and Kriausakul, N. 1984. ‘Comparison of rates and degrees of isoleucine epimerization in dipeptides and tripeptides’. Organic Geochemistry, 7(1): 918. DOI: 10.1016/0146-6380(84)90140-2
  46. 46Orem, CA and Kaufman, DS. 2011. ‘Effects of basic pH on amino acid racemization and leaching in freshwater mollusk shell’. Quaternary Geochronology, 6(2): 23345. DOI: 10.1016/j.quageo.2010.11.005
  47. 49Ortiz, JE, Sánchez-Palencia, Y, Gutiérrez-Zugasti, I, Torres, T and González-Morales, M. 2018. ‘Protein diagenesis in archaeological gastropod shells and the suitability of this material for amino acid racemisation dating: Phorcus lineatus (da Costa, 1778)’. Quaternary Geochronology, 46: 1627. DOI: 10.1016/j.quageo.2018.02.002
  48. 47Ortiz, JE, Torres, T and Pérez-González, A. 2013. ‘Amino acid racemization in four species of ostracodes: taxonomic, environmental, and microstructural controls’. Quaternary Geochronology, 16: 129143. DOI: 10.1016/j.quageo.2012.11.004
  49. 48Ortiz, JE, Torres, T, Sánchez-Palencia, Y and Ferrer, M. 2017. ‘Inter-and intra-crystalline protein diagenesis in Glycymeris shells: Implications for amino acid geochronology’. Quaternary Geochronology, 41: 3750. DOI: 10.1016/j.quageo.2017.05.007
  50. 50Penkman, KE. 2005. ‘Amino acid geochronology: a closed system approach to test and refine the UK model’. Unpublished thesis (PhD), University of Newcastle.
  51. 51Penkman, KEH, Kaufman, DS, Maddy, D and Collins, MJ. 2008 Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells. Quaternary Geochronology, 3(1–2): 225. DOI: 10.1016/j.quageo.2007.07.001
  52. 53Penkman, KE, Preece, RC, Bridgland, DR, Keen, DH, Meijer, T, Parfitt, SA, White, TS and Collins, MJ. 2013. ‘An aminostratigraphy for the British Quaternary based on Bithynia opercula’. Quaternary Science Reviews, 61: 11134. DOI: 10.1016/j.quascirev.2012.10.046
  53. 52Penkman, KEH, Preece, RC, Keen, DH, Maddy, D, Schreve, DC and Collins, MJ. 2007. ‘Testing the aminostratigraphy of fluvial archives: the evidence from intra-crystalline proteins within freshwater shells’. Quaternary Science Reviews, 26(22–24): 295869. DOI: 10.1016/j.quascirev.2007.06.034
  54. 54Powell, J, Collins, MJ, Cussens, J, MacLeod, N and Penkman, KE. 2013. ‘Results from an amino acid racemization inter-laboratory proficiency study; design and performance evaluation’. Quaternary Geochronology, 16: 183197. DOI: 10.1016/j.quageo.2012.11.001
  55. 55Preece, RC and Penkman, KEH. 2005. ‘New faunal analyses and amino acid dating of the Lower Palaeolithic site at East Farm, Barnham, Suffolk’. Proceedings of the Geologists’ Association, 116(3–4): 363377. DOI: 10.1016/S0016-7878(05)80053-7
  56. 56Reynolds, SC and Kibii, JM. 2011. ‘Sterkfontein at 75: review of paleoenvironments, fauna, dating and archaeology from the hominin site of Sterkfontein (Gauteng Province, South Africa)’. Palaeontologia africana, 46: 5988. http://hdl.handle.net10539/13827.
  57. 57Smith, GG and Evans, RC. 1980. The effect of structure and conditions on the rate of racemization of free and bound amino acids. In Biogeochem. Amino Acids Conference Papers.
  58. 58Stephenson, RC and Clarke, S. 1989. ‘Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins’. Journal of Biological Chemistry, 264(11): 616470. DOI: 10.1016/S0021-9258(18)83327-0
  59. 59Sykes, GA, Collins, MJ and Walton, DI. 1995. ‘The significance of a geochemically isolated intracrystalline organic fraction within biominerals’. Organic Geochemistry, 23(11–12): 105965. DOI: 10.1016/0146-6380(95)00086-0
  60. 60Takahashi, O, Kobayashi, K and Oda, A. 2010. ‘Computational insight into the mechanism of serine residue racemization’. Chemistry & Biodiversity, 7(6): 16259. DOI: 10.1002/cbdv.200900297
  61. 61Thompson, JC. 2010. ‘Taphonomic analysis of the middle stone age faunal assemblage from Pinnacle Point Cave 13B, Western Cape, South Africa’. Journal of Human Evolution, 59(3–4): 32139. DOI: 10.1016/j.jhevol.2010.07.004
  62. 62Tomiak, PJ, Penkman, KE, Hendy, EJ, Demarchi, B, Murrells, S, Davis, SA, McCullagh, P and Collins, MJ. 2013. ‘Testing the limitations of artificial protein degradation kinetics using known-age massive Porites coral skeletons’. Quaternary Geochronology, 16: 87109. DOI: 10.1016/j.quageo.2012.07.001
  63. 63Torres, T, Ortiz, JE, Fernández, E, Arroyo-Pardo, E, Grün, R and Pérez-González, A. 2014. ‘Aspartic acid racemization as a dating tool for dentine: a reality’. Quaternary Geochronology, 22: 4356. DOI: 10.1016/j.quageo.2014.02.004
  64. 64Towe, KM. 1980. ‘Preserved organic ultrastructure: an unreliable indicator for Paleozoic amino acid biogeochemistry’. In: Hare, PE, Hoering, TC, King, KJ. The Biogeochemistry of Amino Acids. Wiley, New York, pp. 6574.
  65. 65Val, A, Dirks, PH, Backwell, LR, d’Errico, F and Berger, LR. 2015. ‘Taphonomic analysis of the faunal assemblage associated with the hominins (Australopithecus sediba) from the Early Pleistocene cave deposits of Malapa, South Africa’. PloS one, 10(6): 0126904. DOI: 10.1371/journal.pone.0126904
  66. 66Vallentyne, JR. 1964. ‘Biogeochemistry of organic matter—II Thermal reaction kinetics and transformation products of amino compounds’. Geochimica et Cosmochimica Acta, 28(2): 15788. DOI: 10.1016/0016-7037(64)90147-4
  67. 67Walton, D. 1998. ‘Degradation of intracrystalline proteins and amino acids in fossil brachiopods’. Organic Geochemistry, 28(6): 389410. DOI: 10.1016/S0146-6380(97)90126-1
  68. 68Wehmiller, JF. 1977. Correlation and chronology of Pacific coast marine terrace deposits of continental United States by fossil amino acid stereochemistry: Technique evaluation, relative ages, kinetic model ages, and geologic implications. US Department of the Interior, Geological Survey. DOI: 10.3133/ofr77680
  69. 69Wehmiller, JF and Miller, GH. 2000. ‘Aminostratigraphic dating methods in Quaternary geology’. Quaternary geochronology: methods and applications, 4: 187222. DOI: 10.1029/RF004p0187
  70. 70Welker, F, Ramos-Madrigal, J, Kuhlwilm, M, Liao, W, Gutenbrunner, P, de Manuel, M, Samodova, D, Mackie, M, Allentoft, ME, Bacon, AM and Collins, MJ. 2019. ‘Enamel proteome shows that Gigantopithecus was an early diverging pongine’. Nature, 576(7786): 2625. DOI: 10.1038/s41586-019-1728-8
  71. 72Wheeler, L. 2022. Towards an aminostratigraphy of foraminifera for Pleistocene sea-level records: testing the intra-crystalline approach to amino acid racemisation dating. Unpublished thesis (PhD), University of York.
  72. 71Wheeler, LJ, Penkman, KE and Sejrup, HP. 2021. ‘Assessing the intra-crystalline approach to amino acid geochronology of Neogloboquadrina pachyderma (sinistral)’. Quaternary Geochronology, 6: 101131. DOI: 10.1016/j.quageo.2020.101131
  73. 73Willerslev, E, Cappellini, E, Boomsma, W, Nielsen, R, Hebsgaard, MB, Brand, TB, Hofreiter, M, Bunce, M, Poinar, HN, Dahl-Jensen, D and Johnsen, S. 2007. ‘Ancient biomolecules from deep ice cores reveal a forested southern Greenland’. Science, 317(5834): pp. 111114. DOI: 10.1126/science.1141758
DOI: https://doi.org/10.5334/oq.132 | Journal eISSN: 2055-298X
Language: English
Submitted on: Dec 2, 2023
Accepted on: Jul 4, 2024
Published on: Sep 18, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Chloë Baldreki, Marc Dickinson, Sally Reynolds, Tom S. White, Lawrence Barham, Kirsty Penkman, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.