References
- 1Abelson, PH. 1955. ‘Organic constituents of fossils’. Carnegie Institute of Washington Year Book, 54: 107–109.
- 2Adams, JW, Herries, AI, Kuykendall, KL and Conroy, GC. 2007. ‘Taphonomy of a South African cave: geological and hydrological influences on the GD 1 fossil assemblage at Gondolin, a Plio-Pleistocene paleocave system in the Northwest Province, South Africa’. Quaternary Science Reviews, 26(19–21): 2526–2543. DOI: 10.1016/j.quascirev.2007.05.006
- 3Bada, JL, Shou, MY, Man, EH and Schroeder, RA. 1978. ‘Decomposition of hydroxy amino acids in foraminiferal tests; kinetics, mechanism and geochronological implications’. Earth and Planetary Science Letters, 41(1): 67–76. DOI: 10.1016/0012-821X(78)90042-0
- 4Baldreki, C. 2024.
Revisiting past excavations from South-Central Africa: palaeoenvironmental, biomolecular and geochronological analysis to improve archaeological understanding . Unpublished thesis (PhD), University of York. - 5Baldreki, C, Burnham, A, Conti, M, Wheeler, L, Simms, MJ, Barham, L, White, TS and Penkman, K. 2024. ‘Investigating the potential of African land snail shells (Gastropoda: Achatininae) for amino acid geochronology’. Quaternary Geochronology, 79: 101473. DOI: 10.1016/j.quageo.2023.101473
- 6Barham, LS. 2000. The Middle Stone Age of Zambia, South Central Africa. Western Academic & Specialist Press.
- 7Barham, LS and Debenham, N. Chapter 3 in Barham, L.S. 2000. The Middle Stone Age of Zambia, South Central Africa. Western Academic & Specialist Press.
- 8Barham, L. 2002. ‘Systematic pigment use in the Middle Pleistocene of South-Central Africa’. Current anthropology, 43(1): 181–190. DOI: 10.1086/338292
- 10Barham, L, Duller, GAT, Candy, I, Scott, C, Cartwright, CR, Peterson, JR, Kabukcu, C, Chapot, MS, Melia, F, Rots, V and George, N. 2023. ‘Evidence for the earliest structural use of wood at least 476,000 years ago’. Nature, 1–5. DOI: 10.1038/s41586-023-06557-9
- 9Barham, L and Mitchell, P. 2008. The First Africans: African Archaeology from the Earliest Toolmakers to Most Recent Foragers. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511817830
- 12Bishop, LC, Barham, L, Ditchfield, PW, Elton, S, Harcourt-Smith, WE and Dawkins, P. 2016. ‘Quaternary fossil fauna from the Luangwa Valley, Zambia’. Journal of Quaternary Science, 31(3): 178–190. DOI: 10.1002/jqs.2855
- 11Bishop, LC and Reynolds, SC. Chapter 11 Fauna from Twin Rivers in Barham, L.S. 2000. The Middle Stone Age of Zambia, South Central Africa. Western Academic & Specialist Press.
- 13Bowen, DQ, Hughes, S, Sykes, GA and Miller, GH. 1989. ‘Land-sea correlations in the Pleistocene based on isoleucine epimerization in non-marine molluscs’. Nature, 340(6228): 49–51. DOI: 10.1038/340049a0
- 14Brain, CK. 1983. The hunters or the hunted?: an introduction to African cave taphonomy. University of Chicago Press.
- 15Bright, J and Kaufman, DS. 2011. ‘Amino acid racemization in lacustrine ostracodes, part I: effect of oxidizing pre-treatments on amino acid composition’. Quaternary Geochronology, 6(2): 154–173. DOI: 10.1016/j.quageo.2010.11.006
- 16Brooks, AS, Hare, PE, Kokis, JE, Miller, GH, Ernst, RD and Wendorf, F. 1990. ‘Dating Pleistocene archeological sites by protein diagenesis in ostrich eggshell’. Science, 248(4951): 60–64. DOI: 10.1126/science.248.4951.60
- 18Burrough, SL, Thomas, DS, Allin, JR, Coulson, SD, Mothulatshipi, SM, Nash, DJ and Staurset, S. 2022. ‘Lessons from a lakebed: unpicking hydrological change and early human landscape use in the Makgadikgadi basin, Botswana’. Quaternary Science Reviews, 107662. DOI: 10.1016/j.quascirev.2022.107662
- 17Burrough, SL, Thomas, DSG and Barham, LS. 2019. ‘Implications of a new chronology for the interpretation of the Middle and Later Stone Age of the upper Zambezi Valley’. Journal of Archaeological Science: Reports, 23: 376–389. DOI: 10.1016/j.jasrep.2018.10.016
- 19Cappellini, E, Welker, F, Pandolfi, L, Ramos-Madrigal, J, Samodova, D, Rüther, PL, Fotakis, AK, Lyon, D, Moreno-Mayar, JV, Bukhsianidze, M and Rakownikow Jersie-Christensen, R. 2019. ‘Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny’. Nature, 574(7776): 103–107. DOI: 10.1038/s41586-019-1555-y
- 20Chan, EK, Timmermann, A, Baldi, BF, Moore, AE, Lyons, RJ, Lee, SS, Kalsbeek, AM, Petersen, DC, Rautenbach, H, Förtsch, HE and Bornman, M. 2019. ‘Human origins in a southern African palaeo-wetland and first migrations’. Nature, 575(7781): 185–189. DOI: 10.1038/s41586-019-1714-1
- 21Clark, JD and Brown, KS. 2001. ‘The Twin Rivers Kopje, Zambia: stratigraphy, fauna, and artefact assemblages from the 1954 and 1956 excavations’. Journal of Archaeological Science, 28(3): 305–330. DOI: 10.1006/jasc.2000.0563
- 22Crisp, M, Demarchi, B, Collins, M, Morgan-Williams, M, Pilgrim, E and Penkman, K. 2013a. ‘Isolation of the intra-crystalline proteins and kinetic studies in Struthio camelus (ostrich) eggshell for amino acid geochronology’. Quaternary Geochronology, 16: 110–128. DOI: 10.1016/j.quageo.2012.09.002
- 23Crisp, MK. 2013b.
Amino acid racemization dating: Method development using African ostrich (Struthio camelus) eggshell . Unpublished thesis (PhD), University of York. - 24Demarchi, B, Rogers, K, Fa, DA, Finlayson, CJ, Milner, N and Penkman, KEH. 2013a. ‘Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part I: Isolation and testing of the closed system’. Quaternary Geochronology, 16: 144–157. DOI: 10.1016/j.quageo.2012.03.016
- 25Demarchi, B, Collins, M, Bergström, E, Dowle, A, Penkman, K, Thomas-Oates, J and Wilson, J. 2013b. ‘New experimental evidence for in-chain amino acid racemization of serine in a model peptide’. Analytical chemistry, 85(12): 5835–5842. DOI: 10.1021/ac4005869
- 26Demarchi, B, Clements, E, Coltorti, M, Van De Locht, R, Kröger, R, Penkman, K and Rose, J. 2015. ‘Testing the effect of bleaching on the bivalve Glycymeris: A case study of amino acid geochronology on key Mediterranean raised beach deposits’. Quaternary Geochronology, 25: 49–65. DOI: 10.1016/j.quageo.2014.09.003
- 27Dennell, R. 2008. The palaeolithic settlement of Asia. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511818882
- 28Dickinson, MR, Lister, AM and Penkman, KE. 2019. ‘A new method for enamel amino acid racemization dating: a closed system approach’. Quaternary Geochronology, 50: 29–46. DOI: 10.1016/j.quageo.2018.11.005
- 29Dickinson, MR, Scott, K, Adams, NF, Lister, AM and Penkman, KEH. 2024. ‘Amino acid dating of Pleistocene mammalian enamel from the River Thames terrace sequence: a multi-taxon approach’. Quaternary Geochronology, p. 101543. DOI: 10.1016/j.quageo.2024.101543
- 30Duller, GA, Tooth, S, Barham, L and Tsukamoto, S. 2015. ‘New investigations at Kalambo Falls, Zambia: Luminescence chronology, site formation, and archaeological significance’. Journal of Human Evolution, 85: 111–25. DOI: 10.1016/j.jhevol.2015.05.003
- 31French, JC. 2021. Palaeolithic Europe: A Demographic and Social Prehistory. Cambridge: Cambridge University Press. DOI: 10.1017/9781108590891
- 32Grün, R, Pike, A, McDermott, F, Eggins, S, Mortimer, G, Aubert, M, Kinsley, L, Joannes-Boyau, R, Rumsey, M, Denys, C and Brink, J. 2020. ‘Dating the skull from Broken Hill, Zambia, and its position in human evolution’. Nature, 580(7803): 372–5. DOI: 10.1038/s41586-020-2165-4
- 33Hare, PE and Mitterer, RM. 1967. ‘Non-protein amino acids in fossil shells’. Carnegie Institute Washington Year Book, 65: 362–364.
- 34Hare, PE and Mitterer, RM. 1969. ‘Laboratory simulation of amino acid diagenesis in fossils’. Carnegie Institute Washington Year Book, 67: 205–208.
- 35Hearty, PJ and Kaufman, DS. 2009. ‘A Cerion-based chronostratigraphy and age model from the central Bahama Islands: Amino acid racemization and 14C in land snails and sediments’. Quaternary Geochronology, 4(2): 148–59. DOI: 10.1016/j.quageo.2008.08.002
- 36Hendy, EJ, Tomiak, PJ, Collins, MJ, Hellstrom, J, Tudhope, AW, Lough, JM and Penkman, KE. 2012. ‘Assessing amino acid racemization variability in coral intra-crystalline protein for geochronological applications’. Geochimica et Cosmochimica Acta, 86: 338–53. DOI: 10.1016/j.gca.2012.02.020
- 37Hill, RL. 1965. ‘Hydrolysis of proteins’. Advances in Protein Chemistry, 20: 37–107. DOI: 10.1016/S0065-3233(08)60388-5
- 39Kaufman, DS. 2006. ‘Temperature sensitivity of aspartic and glutamic acid racemization in the foraminifera Pulleniatina’. Quaternary Geochronology, 1(3): 188–207. DOI: 10.1016/j.quageo.2006.06.008
- 38Kaufman, DS and Manley, WF. 1998. ‘A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography’. Quaternary Science Reviews, 17(11): 987–1000. DOI: 10.1016/S0277-3791(97)00086-3
- 40King, KJ and Hare, PE. 1972. ‘Species effects in the epimerization of L-isoleucine in fossil planktonic foraminifera’. Carnegie Institute Washington Year Book, 71: 596–598.
- 41Klein, RG and Cruz-Uribe, K. Chapter 4 in Barham, L.S. 2000. The Middle Stone Age of Zambia, South Central Africa. Western Academic & Specialist Press.
- 42Koppel, B, Szabo, K, Moore, MW and Morwood, MJ. 2016. ‘Untangling time-averaging in shell middens: defining temporal units using amino acid racemisation’. Journal of Archaeological Science: Reports, 7: 741–50. DOI: 10.1016/j.jasrep.2015.08.040
- 43Kosnik, MA and Kaufman, DS. 2008. ‘Identifying outliers and assessing the accuracy of amino acid racemization measurements for geochronology: II’. Data screening. Quaternary Geochronology, 3(4): 328–341. DOI: 10.1016/j.quageo.2008.04.001
- 44Marin-Monfort, MD, García-Morato, S, Andrews, P, Avery, DM, Chazan, M, Horwitz, LK and Fernández-Jalvo, Y. 2022. ‘The owl that never left! Taphonomy of Earlier Stone Age small mammal assemblages from Wonderwerk Cave (South Africa)’. Quaternary International, 614: 111–25. DOI: 10.1016/j.quaint.2021.04.014
- 45Mitterer, RM and Kriausakul, N. 1984. ‘Comparison of rates and degrees of isoleucine epimerization in dipeptides and tripeptides’. Organic Geochemistry, 7(1): 91–8. DOI: 10.1016/0146-6380(84)90140-2
- 46Orem, CA and Kaufman, DS. 2011. ‘Effects of basic pH on amino acid racemization and leaching in freshwater mollusk shell’. Quaternary Geochronology, 6(2): 233–45. DOI: 10.1016/j.quageo.2010.11.005
- 49Ortiz, JE, Sánchez-Palencia, Y, Gutiérrez-Zugasti, I, Torres, T and González-Morales, M. 2018. ‘Protein diagenesis in archaeological gastropod shells and the suitability of this material for amino acid racemisation dating: Phorcus lineatus (da Costa, 1778)’. Quaternary Geochronology, 46: 16–27. DOI: 10.1016/j.quageo.2018.02.002
- 47Ortiz, JE, Torres, T and Pérez-González, A. 2013. ‘Amino acid racemization in four species of ostracodes: taxonomic, environmental, and microstructural controls’. Quaternary Geochronology, 16: 129–143. DOI: 10.1016/j.quageo.2012.11.004
- 48Ortiz, JE, Torres, T, Sánchez-Palencia, Y and Ferrer, M. 2017. ‘Inter-and intra-crystalline protein diagenesis in Glycymeris shells: Implications for amino acid geochronology’. Quaternary Geochronology, 41: 37–50. DOI: 10.1016/j.quageo.2017.05.007
- 50Penkman, KE. 2005.
‘Amino acid geochronology: a closed system approach to test and refine the UK model’ . Unpublished thesis (PhD), University of Newcastle. - 51Penkman, KEH, Kaufman, DS, Maddy, D and Collins, MJ. 2008 Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells. Quaternary Geochronology, 3(1–2): 2–25. DOI: 10.1016/j.quageo.2007.07.001
- 53Penkman, KE, Preece, RC, Bridgland, DR, Keen, DH, Meijer, T, Parfitt, SA, White, TS and Collins, MJ. 2013. ‘An aminostratigraphy for the British Quaternary based on Bithynia opercula’. Quaternary Science Reviews, 61: 111–34. DOI: 10.1016/j.quascirev.2012.10.046
- 52Penkman, KEH, Preece, RC, Keen, DH, Maddy, D, Schreve, DC and Collins, MJ. 2007. ‘Testing the aminostratigraphy of fluvial archives: the evidence from intra-crystalline proteins within freshwater shells’. Quaternary Science Reviews, 26(22–24): 2958–69. DOI: 10.1016/j.quascirev.2007.06.034
- 54Powell, J, Collins, MJ, Cussens, J, MacLeod, N and Penkman, KE. 2013. ‘Results from an amino acid racemization inter-laboratory proficiency study; design and performance evaluation’. Quaternary Geochronology, 16: 183–197. DOI: 10.1016/j.quageo.2012.11.001
- 55Preece, RC and Penkman, KEH. 2005. ‘New faunal analyses and amino acid dating of the Lower Palaeolithic site at East Farm, Barnham, Suffolk’. Proceedings of the Geologists’ Association, 116(3–4): 363–377. DOI: 10.1016/S0016-7878(05)80053-7
- 56Reynolds, SC and Kibii, JM. 2011. ‘Sterkfontein at 75: review of paleoenvironments, fauna, dating and archaeology from the hominin site of Sterkfontein (Gauteng Province, South Africa)’. Palaeontologia africana, 46: 59–88.
http://hdl.handle.net10539/13827 . - 57Smith, GG and Evans, RC. 1980. The effect of structure and conditions on the rate of racemization of free and bound amino acids. In Biogeochem. Amino Acids Conference Papers.
- 58Stephenson, RC and Clarke, S. 1989. ‘Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins’. Journal of Biological Chemistry, 264(11): 6164–70. DOI: 10.1016/S0021-9258(18)83327-0
- 59Sykes, GA, Collins, MJ and Walton, DI. 1995. ‘The significance of a geochemically isolated intracrystalline organic fraction within biominerals’. Organic Geochemistry, 23(11–12): 1059–65. DOI: 10.1016/0146-6380(95)00086-0
- 60Takahashi, O, Kobayashi, K and Oda, A. 2010. ‘Computational insight into the mechanism of serine residue racemization’. Chemistry & Biodiversity, 7(6): 1625–9. DOI: 10.1002/cbdv.200900297
- 61Thompson, JC. 2010. ‘Taphonomic analysis of the middle stone age faunal assemblage from Pinnacle Point Cave 13B, Western Cape, South Africa’. Journal of Human Evolution, 59(3–4): 321–39. DOI: 10.1016/j.jhevol.2010.07.004
- 62Tomiak, PJ, Penkman, KE, Hendy, EJ, Demarchi, B, Murrells, S, Davis, SA, McCullagh, P and Collins, MJ. 2013. ‘Testing the limitations of artificial protein degradation kinetics using known-age massive Porites coral skeletons’. Quaternary Geochronology, 16: 87–109. DOI: 10.1016/j.quageo.2012.07.001
- 63Torres, T, Ortiz, JE, Fernández, E, Arroyo-Pardo, E, Grün, R and Pérez-González, A. 2014. ‘Aspartic acid racemization as a dating tool for dentine: a reality’. Quaternary Geochronology, 22: 43–56. DOI: 10.1016/j.quageo.2014.02.004
- 64Towe, KM. 1980.
‘Preserved organic ultrastructure: an unreliable indicator for Paleozoic amino acid biogeochemistry’ . In: Hare, PE, Hoering, TC, King, KJ. The Biogeochemistry of Amino Acids. Wiley, New York, pp. 65–74. - 65Val, A, Dirks, PH, Backwell, LR, d’Errico, F and Berger, LR. 2015. ‘Taphonomic analysis of the faunal assemblage associated with the hominins (Australopithecus sediba) from the Early Pleistocene cave deposits of Malapa, South Africa’. PloS one, 10(6): 0126904. DOI: 10.1371/journal.pone.0126904
- 66Vallentyne, JR. 1964. ‘Biogeochemistry of organic matter—II Thermal reaction kinetics and transformation products of amino compounds’. Geochimica et Cosmochimica Acta, 28(2): 157–88. DOI: 10.1016/0016-7037(64)90147-4
- 67Walton, D. 1998. ‘Degradation of intracrystalline proteins and amino acids in fossil brachiopods’. Organic Geochemistry, 28(6): 389–410. DOI: 10.1016/S0146-6380(97)90126-1
- 68Wehmiller, JF. 1977. Correlation and chronology of Pacific coast marine terrace deposits of continental United States by fossil amino acid stereochemistry: Technique evaluation, relative ages, kinetic model ages, and geologic implications. US Department of the Interior, Geological Survey. DOI: 10.3133/ofr77680
- 69Wehmiller, JF and Miller, GH. 2000. ‘Aminostratigraphic dating methods in Quaternary geology’. Quaternary geochronology: methods and applications, 4: 187–222. DOI: 10.1029/RF004p0187
- 70Welker, F, Ramos-Madrigal, J, Kuhlwilm, M, Liao, W, Gutenbrunner, P, de Manuel, M, Samodova, D, Mackie, M, Allentoft, ME, Bacon, AM and Collins, MJ. 2019. ‘Enamel proteome shows that Gigantopithecus was an early diverging pongine’. Nature, 576(7786): 262–5. DOI: 10.1038/s41586-019-1728-8
- 72Wheeler, L. 2022.
Towards an aminostratigraphy of foraminifera for Pleistocene sea-level records: testing the intra-crystalline approach to amino acid racemisation dating . Unpublished thesis (PhD), University of York. - 71Wheeler, LJ, Penkman, KE and Sejrup, HP. 2021. ‘Assessing the intra-crystalline approach to amino acid geochronology of Neogloboquadrina pachyderma (sinistral)’. Quaternary Geochronology, 6: 101131. DOI: 10.1016/j.quageo.2020.101131
- 73Willerslev, E, Cappellini, E, Boomsma, W, Nielsen, R, Hebsgaard, MB, Brand, TB, Hofreiter, M, Bunce, M, Poinar, HN, Dahl-Jensen, D and Johnsen, S. 2007. ‘Ancient biomolecules from deep ice cores reveal a forested southern Greenland’. Science, 317(5834): pp. 111–114. DOI: 10.1126/science.1141758
