References
- 1Abbott, S, Trinkaus, E and Burr, DB. 1996. Dynamic bone remodeling in later Pleistocene fossil hominids. American Journal of Physical Anthropology, 99(4): 585–601. DOI: 10.1002/(SICI)1096-8644(199604)99:4<;585::AID-AJPA5>3.0.CO;2-T
- 2Andreaus, U, Colloca, M and Iacoviello, D. 2014. Optimal bone density distributions: numerical analysis of the osteocyte spatial influence in bone remodeling. Computer Methods and Programs in Biomedicine, 113(1): 80–91. DOI: 10.1016/j.cmpb.2013.09.002
- 3Andronowski, JM and Cole, ME. 2021. Current and emerging histomorphometric and imaging techniques for assessing age-at-death and cortical bone quality. Forensic Science, 3(2):
e1399 . DOI: 10.1002/wfs2.1399 - 4Bromage, TG, Juwayeyi, YM, Katris, JA, Gomez, S, Ovsiy, O, Goldstein, J, Janal, MN, Hu, B and Schrenk, F. 2016. The scaling of human osteocyte lacuna density with body size and metabolism. Comptes Rendus Palevol, 15(1): 32–39. DOI: 10.1016/j.crpv.2015.09.001
- 5Bromage, TG, Lacruz, RS, Hogg, R, Goldman, HM, McFarlin, SC, Warshaw, J, Dirks, W, Perez-Ochoa, A, Smolyar, I, Enlow, DH and Boyde, A. 2009. Lamellar bone is an incremental tissue reconciling enamel rhythms, body size, and organismal life history. Calcified Tissue International, 84(5): 388–404. DOI: 10.1007/s00223-009-9221-2
- 6Canè, V, Marotti, G, Volpi, G, Zaffe, D, Palazzini, S, Remaggi, F and Muglia, MA. 1982. Size and density of osteocyte lacunae in different regions of long bones. Calcified Tissue International, 34(1): 558–563. DOI: 10.1007/BF02411304
- 7Chakkalakal, DA. 1989. Mechanoelectric transduction in bone. Journal of Materials Research, 4(4): 1034–1046. DOI: 10.1557/JMR.1989.1034
- 8Chan, AH, Crowder, CM and Rogers, TL. 2007. Variation in cortical bone histology within the human femur and its impact on estimating age at death. American Journal of Physical Anthropology, 132(1): 80–88. DOI: 10.1002/ajpa.20465
- 9Chen, X, Wang, L, Zhao, K and Wang, H. 2018. Osteocytogenesis: roles of physicochemical factors, collagen cleavage, and exogenous molecules. Tissue Engineering Part B: Reviews, 24(3): 215–225. DOI: 10.1089/ten.teb.2017.0378
- 10Cook, M, Molto, EL and Anderson, C. 1988. Possible case of hyperparathyroidism in a Roman period skeleton from the Dakhleh Oasis, Egypt, diagnosed using bone histomorphometry. American Journal of Physical Anthropology, 75(1): 23–30. DOI: 10.1002/ajpa.1330750104
- 11Crowder, C and Stout, S. (eds.) 2011. Bone Histology: An Anthropological Perspective. Boca Raton: CRC Press. DOI: 10.1201/b11393
- 12Crowder, C, Dominguez, VM, Heinrich, J, Pinto, D and Mavroudas, S. 2022. Analysis of histomorphometric variables: Proposal and validation of osteon definitions. Journal of Forensic Sciences, 67(1): 80–91. DOI: 10.1111/1556-4029.14949
- 13Cruz, L, Buldyrev, SV, Peng, S, Roe, DL, Urbanc, B, Stanley, HE and Rosene, DL. 2005. A statistically based density map method for identification and quantification of regional differences in microcolumnarity in the monkey brain. Journal of Neuroscience Methods, 141(2): 321–332. DOI: 10.1016/j.jneumeth.2004.09.005
- 14Cummaudo, M, Cappella, A, Giacomini, F, Raffone, C, Màrquez-Grant, N and Cattaneo, C. 2019. Histomorphometric analysis of osteocyte lacunae in human and pig: exploring its potential for species discrimination. International Journal of Legal Medicine, 133(3): 711–718. DOI: 10.1007/s00414-018-01989-9
- 15Currey, JD. 2006. Bones: Structure and Mechanics. Princeton: Princeton University Press.
- 16de Buffrénil, V, de Ricqlès, AJ, Zylberberg, L and Padian, K. (eds.) 2021. Vertebrate Skeletal Histology and Paleohistology. Boca Raton: CRC Press. DOI: 10.1201/9781351189590
- 17de Ricqlès, AJ. 1993.
Some remarks on palaeohistology from a comparative evolutionary point of view . In: Grupe, G and Garland, AN (eds.), Histology of Ancient Human Bone: Methods and Diagnosis, 37–77. Berlin: Springer. DOI: 10.1007/978-3-642-77001-2_4 - 18Dempster, DW, Compston, JE, Drezner, MK, Glorieux, FH, Kanis, JA, Malluche, H, Meunier, PJ, Ott, SM, Recker, RR and Parfitt, AM. 2013. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. Journal of Bone and Mineral Research, 28(1): 2–17. DOI: 10.1002/jbmr.1805
- 19Drew, ER, Mahoney, P and Miszkiewicz, JJ. 2021. Osteocyte lacuno-canalicular microstructure across the mid-shaft femur in adult males from medieval England. International Journal of Osteoarchaeology, 31(2): 176–187. DOI: 10.1002/oa.2937
- 20Erben, RG and Glösmann, M. 2019.
Histomorphometry in rodents . In: Idris, A (ed.), Bone Research Protocols. Methods in Molecular Biology, 411–435. New York, NY: Humana Press. DOI: 10.1007/978-1-4939-8997-3_24 - 21Fernández, C, Lysakowski, ANNA and Goldberg, JM. 1995. Hair-cell counts and afferent innervation patterns in the cristae ampullares of the squirrel monkey with a comparison to the chinchilla. Journal of Neurophysiology, 73(3): 1253–1269. DOI: 10.1152/jn.1995.73.3.1253
- 22Frost, HM. 1987. Secondary osteon population densities: an algorithm for estimating the missing osteons. American Journal of Physical Anthropology, 30(S8): 239–254. DOI: 10.1002/ajpa.1330300513
- 23Gocha, TP and Agnew, AM. 2016. Spatial variation in osteon population density at the human femoral midshaft: histomorphometric adaptations to habitual load environment. Journal of Anatomy, 228(5): 733–745. DOI: 10.1111/joa.12433
- 24Gorelik, R and Gautreau, A. 2014. Quantitative and unbiased analysis of directional persistence in cell migration. Nature Protocols, 9(8): 1931–1943. DOI: 10.1038/nprot.2014.131
- 25Goulet, GC, Coombe, D, Martinuzzi, RJ and Zernicke, RF. 2009. Poroelastic evaluation of fluid movement through the lacunocanalicular system. Annals of Biomedical Engineering, 37(7): 1390–1402. DOI: 10.1007/s10439-009-9706-1
- 26Hillier, ML and Bell, LS. 2007. Differentiating human bone from animal bone: a review of histological methods. Journal of Forensic Sciences, 52(2): 249–263. DOI: 10.1111/j.1556-4029.2006.00368.x
- 27Hollund, HI, Jans, MM, Collins, MJ, Kars, H, Joosten, I and Kars, SM. 2012. What happened here? Bone histology as a tool in decoding the postmortem histories of archaeological bone from Castricum, The Netherlands. International Journal of Osteoarchaeology, 22(5): 537–548. DOI: 10.1002/oa.1273
- 28Hunter, RL and Agnew, AM. 2016. Intraskeletal variation in human cortical osteocyte lacunar density: implications for bone quality assessment. Bone Reports, 5: 252–261. DOI: 10.1016/j.bonr.2016.09.002
- 29Jans, MM. 2008.
Microbial bioerosion of bone–a review . In: Wisshak, M and Tapanila, L (eds.), Current Developments in Bioerosion, 397–413. Springer Erlangen Earth Conference Series. DOI: 10.1007/978-3-540-77598-0_20 - 30Jindrova, A, Tuma, J and Sladek, V. 2016. Impact of non-invasively induced motor deficits on tibial cortical properties in mutant lurcher mice. PLOS one, 11(7):
e0158877 . DOI: 10.1371/journal.pone.0158877 - 31Kollmannsberger, P, Kerschnitzki, M, Repp, F, Wagermaier, W, Weinkamer, R and Fratzl, P. 2017. The small world of osteocytes: connectomics of the lacuno-canalicular network in bone. New Journal of Physics, 19(7): 073019. DOI: 10.1088/1367-2630/aa764b
- 32Lassen, NE, Andersen, TL, Pløen, GG, Søe, K, Hauge, EM, Harving, S, Eschen, GET and Delaisse, JM. 2017. Coupling of bone resorption and formation in real time: new knowledge gained from human Haversian BMUs. Journal of Bone and Mineral Research, 32(7): 1395–1405. DOI: 10.1002/jbmr.3091
- 33Maggiano, IS, Maggiano, CM, Clement, JG, Thomas, CDL, Carter, Y and Cooper, DM. 2016. Three dimensional reconstruction of Haversian systems in human cortical bone using synchrotron radiation-based micro-CT: morphology and quantification of branching and transverse connections across age. Journal of Anatomy, 228(5): 719–732. DOI: 10.1111/joa.12430
- 34Maggio, A and Franklin, D. 2019. Histomorphometric age estimation from the femoral cortex: a test of three methods in an Australian population. Forensic Science International, 303: 109950. DOI: 10.1016/j.forsciint.2019.109950
- 35Mainland, I, Schutkowski, H and Thomson, AF. 2007. Macro-and micromorphological features of lifestyle differences in pigs and wild boar. Anthropozoologica, 42(2): 89–106.
- 36Martin, RB. 2007. Targeted bone remodeling involves BMU steering as well as activation. Bone, 40(6): 1574–1580. DOI: 10.1016/j.bone.2007.02.023
- 37Miszkiewicz, JJ. 2014.
Ancient human bone histology and behaviour . Unpublished thesis (PhD), University of Kent. - 38Miszkiewicz, JJ. 2015. Histology of a Harris line in a human distal tibia. Journal of Bone and Mineral Metabolism, 33(4): 462–466. DOI: 10.1007/s00774-014-0644-0
- 39Miszkiewicz, J. 2020. The importance of open access software in the analysis of bone histology in biological anthropology. Evolutionary Anthropology, 29(4): 165–167. DOI: 10.1002/evan.21859
- 40Miszkiewicz, JJ and Mahoney, P. 2012. Bone microstructure and behaviour in “gracile” and “robust” adult males from the Medieval Period, Canterbury, UK. American Journal of Physical Anthropology, 147(54): 215–216.
- 41Miszkiewicz, JJ, Rider, C, Kealy, S, Vrahnas, C, Sims, NA, Vongsvivut, J, Tobin, MJ, Bolunia, MJLA, De Leon, AS, Peñalosa, AL, Pagulayan, PS, Soriano, AV, Page, R and Oxenham, MF. 2020. Asymmetric midshaft femur remodeling in an adult male with left sided hip joint ankylosis, Metal Period Nagsabaran, Philippines. International Journal of Paleopathology, 31: 14–22. DOI: 10.1016/j.ijpp.2020.07.003
- 42Miszkiewicz, JJ and van der Geer, AA. 2022. Inferring longevity from advanced rib remodelling in insular dwarf deer. Biological Journal of the Linnean Society, 136(1): 41–58. DOI: 10.1093/biolinnean/blac018
- 43Mitchell, J, Legendre, LJ, Lefevre, C and Cubo, J. 2017. Bone histological correlates of soaring and high-frequency flapping flight in the furculae of birds. Zoology, 122: 90–99. DOI: 10.1016/j.zool.2017.03.004
- 44Mulhern, DM and Ubelaker, DH. 2003. Histologic examination of bone development in juvenile chimpanzees. American Journal of Physical Anthropology, 122(2): 127–133. DOI: 10.1002/ajpa.10294
- 45O’Driscoll, SW, Marx, RG, Fitzsimmons, JS and Beaton, DE. 1999. Method for automated cartilage histomorphometry. Tissue Engineering, 5(1): 13–23. DOI: 10.1089/ten.1999.5.13
- 46Padian, K, Werning, S and Horner, JR. 2016. A hypothesis of differential secondary bone formation in dinosaurs. Comptes Rendus Palevol, 15(1–2): 40–48. DOI: 10.1016/j.crpv.2015.03.002
- 47Paine, RR and Brenton, BP. 2006. Dietary health does affect histological age assessment: an evaluation of the Stout and Paine (1992) age estimation equation using secondary osteons from the rib. Journal of Forensic Sciences, 51(3): 489–492. DOI: 10.1111/j.1556-4029.2006.00118.x
- 48Revell, PA. 1983. Histomorphometry of bone. Journal of Clinical Pathology, 36(12): 1323–1331. DOI: 10.1136/jcp.36.12.1323
- 49Rose, DC, Agnew, AM, Gocha, TP, Stout, SD and Field, JS. 2012. The use of geographical information systems software for the spatial analysis of bone microstructure. American Journal of Physical Anthropology, 148(4): 648–654. DOI: 10.1002/ajpa.22099
- 50Sawada, J, Kondo, O, Nara, T, Dodo, Y and Akazawa, T. 2004. Bone histomorphology of the Dederiyeh Neanderthal child. Anthropological Science, 112(3): 247–256. DOI: 10.1537/ase.00094
- 51Schindelin, J, Rueden, CT, Hiner, MC and Eliceiri, KW. 2015. The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and Development, 82(7): 518–529. DOI: 10.1002/mrd.22489
- 52Schlecht, SH, Pinto, DC, Agnew, AM and Stout, SD. 2012. Brief communication: the effects of disuse on the mechanical properties of bone: what unloading tells us about the adaptive nature of skeletal tissue. American Journal of Physical Anthropology, 149(4): 599–605. DOI: 10.1002/ajpa.22150
- 53Schultz, M. 2001. Paleohistopathology of bone: a new approach to the study of ancient diseases. American Journal of Physical Anthropology, 116(S33): 106–147. DOI: 10.1002/ajpa.10024
- 54Sims, NA and Martin, TJ. 2014. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy Reports, 3. DOI: 10.1038/bonekey.2013.215
- 55Smit, TH, Burger, EH and Huyghe, JM. 2002. A case for strain-induced fluid flow as a regulator of BMU-coupling and osteonal alignment. Journal of Bone and Mineral Research, 17(11): 2021–2029. DOI: 10.1359/jbmr.2002.17.11.2021
- 56Stein, KW and Werner, J. 2013. Preliminary analysis of osteocyte lacunar density in long bones of tetrapods: all measures are bigger in sauropod dinosaurs. PLOS one, 8(10):
e77109 . DOI: 10.1371/journal.pone.0077109 - 57Stout, SD, Cole, ME and Agnew, AM. 2019.
Histomorphology: Deciphering the metabolic record . In: Buikstra, JE (ed.), Ortner’s Identification of Pathological Conditions in Human Skeletal Remains, 91–167. Elsevier Academic Press. DOI: 10.1016/B978-0-12-809738-0.00006-5 - 58Stout, SD and Crowder, C. 2012.
Bone remodeling, histomorphology, and histomorphometry . In: Crowder, C and Stout, SD (eds.), Bone Histology: An Anthropological Perspective, 1–22. Boca Raton: CRC Press. DOI: 10.1201/b11393-2 - 59Stout, SD and Lueck, R. 1995. Bone remodeling rates and skeletal maturation in three archaeoloqical skeletal populations. American Journal of Physical Anthropology, 98(2): 161–171. DOI: 10.1002/ajpa.1330980206
- 60Stout, SD and Stanley, SC. 1991. Percent osteonal bone versus osteon counts: the variable of choice for estimating age at death. American Journal of Physical Anthropology, 86(4): 515–519. DOI: 10.1002/ajpa.1330860407
- 61Streeter, M, Stout, S, Trinkaus, E and Burr, D. 2010. Brief communication: Bone remodeling rates in Pleistocene humans are not slower than the rates observed in modern populations: A reexamination of Abbott et al. (1996). American Journal of Physical Anthropology, 141(2): 315-318. DOI: 10.1002/ajpa.21192
- 62Sugawara, Y, Kamioka, H, Honjo, T, Tezuka, KI and Takano-Yamamoto, T. 2005. Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy. Bone, 36(5): 877–883. DOI: 10.1016/j.bone.2004.10.008
- 63van Oers, RF, Wang, H and Bacabac, RG. 2015. Osteocyte shape and mechanical loading. Current Osteoporosis Reports, 13(2): 61–66. DOI: 10.1007/s11914-015-0256-1
- 64van Tol, AF, Roschger, A, Repp, F, Chen, J, Roschger, P, Berzlanovich, A, Gruber, GM, Fratzl, P and Weinkamer, R. 2020. Network architecture strongly influences the fluid flow pattern through the lacunocanalicular network in human osteons. Biomechanics and Modeling in Mechanobiology, 19(3): 823–840. DOI: 10.1007/s10237-019-01250-1
- 65Villa, C and Lynnerup, N. 2010. A stereological analysis of the cross-sectional variability of the femoral osteon population. American Journal of Physical Anthropology, 142(3): 491–496. DOI: 10.1002/ajpa.21269
- 66Wang, L, Cowin, SC, Weinbaum, S and Fritton, SP. 2000. Modeling tracer transport in an osteon under cyclic loading. Annals of Biomedical Engineering, 28(10): 1200–1209. DOI: 10.1114/1.1317531
- 67Wang, M, Han, X, Liu, C, Takayama, R, Yasugi, T, Ei, SI, Nagayama, M, Tanaka, Y and Sato, M. 2021. Intracellular trafficking of Notch orchestrates temporal dynamics of Notch activity in the fly brain. Nature Communications, 12(1): 1–15. DOI: 10.1038/s41467-021-22442-3
