Have a personal or library account? Click to login
Cartesian Coordinates in Two-Dimensional Bone Histology Images for Quaternary Bone Remodelling Research Cover

Cartesian Coordinates in Two-Dimensional Bone Histology Images for Quaternary Bone Remodelling Research

Open Access
|Sep 2022

References

  1. 1Abbott, S, Trinkaus, E and Burr, DB. 1996. Dynamic bone remodeling in later Pleistocene fossil hominids. American Journal of Physical Anthropology, 99(4): 585601. DOI: 10.1002/(SICI)1096-8644(199604)99:4<;585::AID-AJPA5>3.0.CO;2-T
  2. 2Andreaus, U, Colloca, M and Iacoviello, D. 2014. Optimal bone density distributions: numerical analysis of the osteocyte spatial influence in bone remodeling. Computer Methods and Programs in Biomedicine, 113(1): 8091. DOI: 10.1016/j.cmpb.2013.09.002
  3. 3Andronowski, JM and Cole, ME. 2021. Current and emerging histomorphometric and imaging techniques for assessing age-at-death and cortical bone quality. Forensic Science, 3(2): e1399. DOI: 10.1002/wfs2.1399
  4. 4Bromage, TG, Juwayeyi, YM, Katris, JA, Gomez, S, Ovsiy, O, Goldstein, J, Janal, MN, Hu, B and Schrenk, F. 2016. The scaling of human osteocyte lacuna density with body size and metabolism. Comptes Rendus Palevol, 15(1): 3239. DOI: 10.1016/j.crpv.2015.09.001
  5. 5Bromage, TG, Lacruz, RS, Hogg, R, Goldman, HM, McFarlin, SC, Warshaw, J, Dirks, W, Perez-Ochoa, A, Smolyar, I, Enlow, DH and Boyde, A. 2009. Lamellar bone is an incremental tissue reconciling enamel rhythms, body size, and organismal life history. Calcified Tissue International, 84(5): 388404. DOI: 10.1007/s00223-009-9221-2
  6. 6Canè, V, Marotti, G, Volpi, G, Zaffe, D, Palazzini, S, Remaggi, F and Muglia, MA. 1982. Size and density of osteocyte lacunae in different regions of long bones. Calcified Tissue International, 34(1): 558563. DOI: 10.1007/BF02411304
  7. 7Chakkalakal, DA. 1989. Mechanoelectric transduction in bone. Journal of Materials Research, 4(4): 10341046. DOI: 10.1557/JMR.1989.1034
  8. 8Chan, AH, Crowder, CM and Rogers, TL. 2007. Variation in cortical bone histology within the human femur and its impact on estimating age at death. American Journal of Physical Anthropology, 132(1): 8088. DOI: 10.1002/ajpa.20465
  9. 9Chen, X, Wang, L, Zhao, K and Wang, H. 2018. Osteocytogenesis: roles of physicochemical factors, collagen cleavage, and exogenous molecules. Tissue Engineering Part B: Reviews, 24(3): 215225. DOI: 10.1089/ten.teb.2017.0378
  10. 10Cook, M, Molto, EL and Anderson, C. 1988. Possible case of hyperparathyroidism in a Roman period skeleton from the Dakhleh Oasis, Egypt, diagnosed using bone histomorphometry. American Journal of Physical Anthropology, 75(1): 2330. DOI: 10.1002/ajpa.1330750104
  11. 11Crowder, C and Stout, S. (eds.) 2011. Bone Histology: An Anthropological Perspective. Boca Raton: CRC Press. DOI: 10.1201/b11393
  12. 12Crowder, C, Dominguez, VM, Heinrich, J, Pinto, D and Mavroudas, S. 2022. Analysis of histomorphometric variables: Proposal and validation of osteon definitions. Journal of Forensic Sciences, 67(1): 8091. DOI: 10.1111/1556-4029.14949
  13. 13Cruz, L, Buldyrev, SV, Peng, S, Roe, DL, Urbanc, B, Stanley, HE and Rosene, DL. 2005. A statistically based density map method for identification and quantification of regional differences in microcolumnarity in the monkey brain. Journal of Neuroscience Methods, 141(2): 321332. DOI: 10.1016/j.jneumeth.2004.09.005
  14. 14Cummaudo, M, Cappella, A, Giacomini, F, Raffone, C, Màrquez-Grant, N and Cattaneo, C. 2019. Histomorphometric analysis of osteocyte lacunae in human and pig: exploring its potential for species discrimination. International Journal of Legal Medicine, 133(3): 711718. DOI: 10.1007/s00414-018-01989-9
  15. 15Currey, JD. 2006. Bones: Structure and Mechanics. Princeton: Princeton University Press.
  16. 16de Buffrénil, V, de Ricqlès, AJ, Zylberberg, L and Padian, K. (eds.) 2021. Vertebrate Skeletal Histology and Paleohistology. Boca Raton: CRC Press. DOI: 10.1201/9781351189590
  17. 17de Ricqlès, AJ. 1993. Some remarks on palaeohistology from a comparative evolutionary point of view. In: Grupe, G and Garland, AN (eds.), Histology of Ancient Human Bone: Methods and Diagnosis, 3777. Berlin: Springer. DOI: 10.1007/978-3-642-77001-2_4
  18. 18Dempster, DW, Compston, JE, Drezner, MK, Glorieux, FH, Kanis, JA, Malluche, H, Meunier, PJ, Ott, SM, Recker, RR and Parfitt, AM. 2013. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. Journal of Bone and Mineral Research, 28(1): 217. DOI: 10.1002/jbmr.1805
  19. 19Drew, ER, Mahoney, P and Miszkiewicz, JJ. 2021. Osteocyte lacuno-canalicular microstructure across the mid-shaft femur in adult males from medieval England. International Journal of Osteoarchaeology, 31(2): 176187. DOI: 10.1002/oa.2937
  20. 20Erben, RG and Glösmann, M. 2019. Histomorphometry in rodents. In: Idris, A (ed.), Bone Research Protocols. Methods in Molecular Biology, 411435. New York, NY: Humana Press. DOI: 10.1007/978-1-4939-8997-3_24
  21. 21Fernández, C, Lysakowski, ANNA and Goldberg, JM. 1995. Hair-cell counts and afferent innervation patterns in the cristae ampullares of the squirrel monkey with a comparison to the chinchilla. Journal of Neurophysiology, 73(3): 12531269. DOI: 10.1152/jn.1995.73.3.1253
  22. 22Frost, HM. 1987. Secondary osteon population densities: an algorithm for estimating the missing osteons. American Journal of Physical Anthropology, 30(S8): 239254. DOI: 10.1002/ajpa.1330300513
  23. 23Gocha, TP and Agnew, AM. 2016. Spatial variation in osteon population density at the human femoral midshaft: histomorphometric adaptations to habitual load environment. Journal of Anatomy, 228(5): 733745. DOI: 10.1111/joa.12433
  24. 24Gorelik, R and Gautreau, A. 2014. Quantitative and unbiased analysis of directional persistence in cell migration. Nature Protocols, 9(8): 19311943. DOI: 10.1038/nprot.2014.131
  25. 25Goulet, GC, Coombe, D, Martinuzzi, RJ and Zernicke, RF. 2009. Poroelastic evaluation of fluid movement through the lacunocanalicular system. Annals of Biomedical Engineering, 37(7): 13901402. DOI: 10.1007/s10439-009-9706-1
  26. 26Hillier, ML and Bell, LS. 2007. Differentiating human bone from animal bone: a review of histological methods. Journal of Forensic Sciences, 52(2): 249263. DOI: 10.1111/j.1556-4029.2006.00368.x
  27. 27Hollund, HI, Jans, MM, Collins, MJ, Kars, H, Joosten, I and Kars, SM. 2012. What happened here? Bone histology as a tool in decoding the postmortem histories of archaeological bone from Castricum, The Netherlands. International Journal of Osteoarchaeology, 22(5): 537548. DOI: 10.1002/oa.1273
  28. 28Hunter, RL and Agnew, AM. 2016. Intraskeletal variation in human cortical osteocyte lacunar density: implications for bone quality assessment. Bone Reports, 5: 252261. DOI: 10.1016/j.bonr.2016.09.002
  29. 29Jans, MM. 2008. Microbial bioerosion of bone–a review. In: Wisshak, M and Tapanila, L (eds.), Current Developments in Bioerosion, 397413. Springer Erlangen Earth Conference Series. DOI: 10.1007/978-3-540-77598-0_20
  30. 30Jindrova, A, Tuma, J and Sladek, V. 2016. Impact of non-invasively induced motor deficits on tibial cortical properties in mutant lurcher mice. PLOS one, 11(7): e0158877. DOI: 10.1371/journal.pone.0158877
  31. 31Kollmannsberger, P, Kerschnitzki, M, Repp, F, Wagermaier, W, Weinkamer, R and Fratzl, P. 2017. The small world of osteocytes: connectomics of the lacuno-canalicular network in bone. New Journal of Physics, 19(7): 073019. DOI: 10.1088/1367-2630/aa764b
  32. 32Lassen, NE, Andersen, TL, Pløen, GG, Søe, K, Hauge, EM, Harving, S, Eschen, GET and Delaisse, JM. 2017. Coupling of bone resorption and formation in real time: new knowledge gained from human Haversian BMUs. Journal of Bone and Mineral Research, 32(7): 13951405. DOI: 10.1002/jbmr.3091
  33. 33Maggiano, IS, Maggiano, CM, Clement, JG, Thomas, CDL, Carter, Y and Cooper, DM. 2016. Three dimensional reconstruction of Haversian systems in human cortical bone using synchrotron radiation-based micro-CT: morphology and quantification of branching and transverse connections across age. Journal of Anatomy, 228(5): 719732. DOI: 10.1111/joa.12430
  34. 34Maggio, A and Franklin, D. 2019. Histomorphometric age estimation from the femoral cortex: a test of three methods in an Australian population. Forensic Science International, 303: 109950. DOI: 10.1016/j.forsciint.2019.109950
  35. 35Mainland, I, Schutkowski, H and Thomson, AF. 2007. Macro-and micromorphological features of lifestyle differences in pigs and wild boar. Anthropozoologica, 42(2): 89106.
  36. 36Martin, RB. 2007. Targeted bone remodeling involves BMU steering as well as activation. Bone, 40(6): 15741580. DOI: 10.1016/j.bone.2007.02.023
  37. 37Miszkiewicz, JJ. 2014. Ancient human bone histology and behaviour. Unpublished thesis (PhD), University of Kent.
  38. 38Miszkiewicz, JJ. 2015. Histology of a Harris line in a human distal tibia. Journal of Bone and Mineral Metabolism, 33(4): 462466. DOI: 10.1007/s00774-014-0644-0
  39. 39Miszkiewicz, J. 2020. The importance of open access software in the analysis of bone histology in biological anthropology. Evolutionary Anthropology, 29(4): 165167. DOI: 10.1002/evan.21859
  40. 40Miszkiewicz, JJ and Mahoney, P. 2012. Bone microstructure and behaviour in “gracile” and “robust” adult males from the Medieval Period, Canterbury, UK. American Journal of Physical Anthropology, 147(54): 215216.
  41. 41Miszkiewicz, JJ, Rider, C, Kealy, S, Vrahnas, C, Sims, NA, Vongsvivut, J, Tobin, MJ, Bolunia, MJLA, De Leon, AS, Peñalosa, AL, Pagulayan, PS, Soriano, AV, Page, R and Oxenham, MF. 2020. Asymmetric midshaft femur remodeling in an adult male with left sided hip joint ankylosis, Metal Period Nagsabaran, Philippines. International Journal of Paleopathology, 31: 1422. DOI: 10.1016/j.ijpp.2020.07.003
  42. 42Miszkiewicz, JJ and van der Geer, AA. 2022. Inferring longevity from advanced rib remodelling in insular dwarf deer. Biological Journal of the Linnean Society, 136(1): 4158. DOI: 10.1093/biolinnean/blac018
  43. 43Mitchell, J, Legendre, LJ, Lefevre, C and Cubo, J. 2017. Bone histological correlates of soaring and high-frequency flapping flight in the furculae of birds. Zoology, 122: 9099. DOI: 10.1016/j.zool.2017.03.004
  44. 44Mulhern, DM and Ubelaker, DH. 2003. Histologic examination of bone development in juvenile chimpanzees. American Journal of Physical Anthropology, 122(2): 127133. DOI: 10.1002/ajpa.10294
  45. 45O’Driscoll, SW, Marx, RG, Fitzsimmons, JS and Beaton, DE. 1999. Method for automated cartilage histomorphometry. Tissue Engineering, 5(1): 1323. DOI: 10.1089/ten.1999.5.13
  46. 46Padian, K, Werning, S and Horner, JR. 2016. A hypothesis of differential secondary bone formation in dinosaurs. Comptes Rendus Palevol, 15(1–2): 4048. DOI: 10.1016/j.crpv.2015.03.002
  47. 47Paine, RR and Brenton, BP. 2006. Dietary health does affect histological age assessment: an evaluation of the Stout and Paine (1992) age estimation equation using secondary osteons from the rib. Journal of Forensic Sciences, 51(3): 489492. DOI: 10.1111/j.1556-4029.2006.00118.x
  48. 48Revell, PA. 1983. Histomorphometry of bone. Journal of Clinical Pathology, 36(12): 13231331. DOI: 10.1136/jcp.36.12.1323
  49. 49Rose, DC, Agnew, AM, Gocha, TP, Stout, SD and Field, JS. 2012. The use of geographical information systems software for the spatial analysis of bone microstructure. American Journal of Physical Anthropology, 148(4): 648654. DOI: 10.1002/ajpa.22099
  50. 50Sawada, J, Kondo, O, Nara, T, Dodo, Y and Akazawa, T. 2004. Bone histomorphology of the Dederiyeh Neanderthal child. Anthropological Science, 112(3): 247256. DOI: 10.1537/ase.00094
  51. 51Schindelin, J, Rueden, CT, Hiner, MC and Eliceiri, KW. 2015. The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and Development, 82(7): 518529. DOI: 10.1002/mrd.22489
  52. 52Schlecht, SH, Pinto, DC, Agnew, AM and Stout, SD. 2012. Brief communication: the effects of disuse on the mechanical properties of bone: what unloading tells us about the adaptive nature of skeletal tissue. American Journal of Physical Anthropology, 149(4): 599605. DOI: 10.1002/ajpa.22150
  53. 53Schultz, M. 2001. Paleohistopathology of bone: a new approach to the study of ancient diseases. American Journal of Physical Anthropology, 116(S33): 106147. DOI: 10.1002/ajpa.10024
  54. 54Sims, NA and Martin, TJ. 2014. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy Reports, 3. DOI: 10.1038/bonekey.2013.215
  55. 55Smit, TH, Burger, EH and Huyghe, JM. 2002. A case for strain-induced fluid flow as a regulator of BMU-coupling and osteonal alignment. Journal of Bone and Mineral Research, 17(11): 20212029. DOI: 10.1359/jbmr.2002.17.11.2021
  56. 56Stein, KW and Werner, J. 2013. Preliminary analysis of osteocyte lacunar density in long bones of tetrapods: all measures are bigger in sauropod dinosaurs. PLOS one, 8(10): e77109. DOI: 10.1371/journal.pone.0077109
  57. 57Stout, SD, Cole, ME and Agnew, AM. 2019. Histomorphology: Deciphering the metabolic record. In: Buikstra, JE (ed.), Ortner’s Identification of Pathological Conditions in Human Skeletal Remains, 91167. Elsevier Academic Press. DOI: 10.1016/B978-0-12-809738-0.00006-5
  58. 58Stout, SD and Crowder, C. 2012. Bone remodeling, histomorphology, and histomorphometry. In: Crowder, C and Stout, SD (eds.), Bone Histology: An Anthropological Perspective, 122. Boca Raton: CRC Press. DOI: 10.1201/b11393-2
  59. 59Stout, SD and Lueck, R. 1995. Bone remodeling rates and skeletal maturation in three archaeoloqical skeletal populations. American Journal of Physical Anthropology, 98(2): 161171. DOI: 10.1002/ajpa.1330980206
  60. 60Stout, SD and Stanley, SC. 1991. Percent osteonal bone versus osteon counts: the variable of choice for estimating age at death. American Journal of Physical Anthropology, 86(4): 515519. DOI: 10.1002/ajpa.1330860407
  61. 61Streeter, M, Stout, S, Trinkaus, E and Burr, D. 2010. Brief communication: Bone remodeling rates in Pleistocene humans are not slower than the rates observed in modern populations: A reexamination of Abbott et al. (1996). American Journal of Physical Anthropology, 141(2): 315-318. DOI: 10.1002/ajpa.21192
  62. 62Sugawara, Y, Kamioka, H, Honjo, T, Tezuka, KI and Takano-Yamamoto, T. 2005. Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy. Bone, 36(5): 877883. DOI: 10.1016/j.bone.2004.10.008
  63. 63van Oers, RF, Wang, H and Bacabac, RG. 2015. Osteocyte shape and mechanical loading. Current Osteoporosis Reports, 13(2): 6166. DOI: 10.1007/s11914-015-0256-1
  64. 64van Tol, AF, Roschger, A, Repp, F, Chen, J, Roschger, P, Berzlanovich, A, Gruber, GM, Fratzl, P and Weinkamer, R. 2020. Network architecture strongly influences the fluid flow pattern through the lacunocanalicular network in human osteons. Biomechanics and Modeling in Mechanobiology, 19(3): 823840. DOI: 10.1007/s10237-019-01250-1
  65. 65Villa, C and Lynnerup, N. 2010. A stereological analysis of the cross-sectional variability of the femoral osteon population. American Journal of Physical Anthropology, 142(3): 491496. DOI: 10.1002/ajpa.21269
  66. 66Wang, L, Cowin, SC, Weinbaum, S and Fritton, SP. 2000. Modeling tracer transport in an osteon under cyclic loading. Annals of Biomedical Engineering, 28(10): 12001209. DOI: 10.1114/1.1317531
  67. 67Wang, M, Han, X, Liu, C, Takayama, R, Yasugi, T, Ei, SI, Nagayama, M, Tanaka, Y and Sato, M. 2021. Intracellular trafficking of Notch orchestrates temporal dynamics of Notch activity in the fly brain. Nature Communications, 12(1): 115. DOI: 10.1038/s41467-021-22442-3
DOI: https://doi.org/10.5334/oq.117 | Journal eISSN: 2055-298X
Language: English
Submitted on: May 6, 2022
Accepted on: Aug 12, 2022
Published on: Sep 7, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Justyna J. Miszkiewicz, Julien Louys, Patrick Mahoney, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.